Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Adv Mater ; : e2404013, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030761

RESUMEN

Van der Waals junctions hold significant potentials for various applications in multifunctional and low-power electronics and optoelectronics. The multistep device fabrication process usually introduces lattice mismatch and defects at the junction interfaces, which deteriorate device performance. Here the layer engineering synthesis of van der Waals homojunctions consisting of 2H-MoTe2 with asymmetric thickness to eliminate heterogenous interfaces and thus obtain clean interfaces is reported. Experimental results confirm that the homostructure nature gives rise to the formation of pristine van der Waals junctions, avoiding chemical disorders and defects. The ability to tune the energy bands of 2H-MoTe2 continuously through layer engineering enables the creation of adjustable built-in electric field at the homojunction boundaries, which leads to the achievement of self-powered photodetection based on the obtained 2H-MoTe2 films. Furthermore, the successful integration of 2H-MoTe2 homojunctions into an image sensor with 10 × 10 pixels, brings about zero-power consumption and near-infrared imaging functions. The pristine van der Waals homojunctions and effective integration strategies shed new insights into the development of large-scale application for two-dimensional materials in advanced electronics and optoelectronics.

3.
Nano Lett ; 24(27): 8369-8377, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38885458

RESUMEN

The metal-semiconductor interface fabricated by conventional methods often suffers from contamination, degrading transport performance. Herein, we propose a one-pot chemical vapor deposition (CVD) process to create a two-dimensional (2D) MoO2-MoSe2 heterostructure by growing MoO2 seeds under a hydrogen environment, followed by depositing MoSe2 on the surface and periphery. The ultraclean interface is verified by cross-sectional scanning transmission electron microscopy and photoluminescence. Along with the high work function of semimetallic MoO2 (Ef = -5.6 eV), a high-rectification Schottky diode is fabricated based on this heterostructure. Furthermore, the Schottky diode exhibits an excellent photovoltaic effect with a high open-circuit voltage of 0.26 eV and ultrafast photoresponse, owing to the naturally formed metal-semiconductor contact with suppressed pinning effect. Our method paves the way for the fabrication of an ultraclean 2D metal-semiconductor interface, without defects or contamination, offering promising prospects for future nanoelectronics.

4.
Mol Neurobiol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430350

RESUMEN

Depression is a prevalent and debilitating psychiatric disorder, imposing substantial societal and individual burdens. This study aims to investigate the involvement of ferroptosis and microglial polarization in the pathogenesis of depression, as well as the underlying mechanism. Increased protein arginine methyltransferase 2 (PRMT2) expression was observed in BV2 cells and the hippocampus following lipopolysaccharide (LPS) stimulation. Mechanistically, alkylation repair homolog protein 5 (ALKBH5)-mediated m6A modification enhanced the stability of PRMT2 mRNA. PRMT2 promoted arginine methylation of ß-catenin and induced proteasomal degradation of ß-catenin proteins, resulting in transcriptional inhibition of glutathione peroxidase 4 (GPX4). The upregulation of PRMT2 further accelerated microglia polarization by activating ferroptosis through the ß-catenin-GPX4 axis. Depletion of PRMT2 improved LPS-induced depressive- and anxiety-like behaviors as well as cognitive impairment by inhibiting ferroptosis and M1 polarization of microglia. Our findings underscore the crucial involvement of the ALKBH5-PRMT2-ß-catenin-GPX4 axis in ferroptosis and M1 polarization of microglia, thereby offering novel insights into the pathogenesis interventions for depression.

5.
Nano Lett ; 23(23): 11034-11042, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038404

RESUMEN

WSe2 has a high mobility of electrons and holes, which is an ideal choice as active channels of electronics in extensive fields. However, carrier-type tunability of WSe2 still has enormous challenges, which are essential to overcome for practical applications. In this work, the direct growth of n-doped few-layer WSe2 is realized via in situ defect engineering. The n-doping of WSe2 is attributed to Se vacancies induced by the H2 flow purged in the cooling process. The electrical measurements based on field effect transistors demonstrate that the carrier type of WSe2 synthesized is successfully transferred from the conventional p-type to the rarely reported n-type. The electron carrier concentration is efficiently modulated by the concentration of H2 during the cooling process. Furthermore, homomaterial inverters and self-powered photodetectors are fabricated based on the doping-type-tunable WSe2. This work reveals a significant way to realize the controllable carrier type of two-dimensional (2D) materials, exhibiting great potential in future 2D electronics engineering.

6.
Langmuir ; 39(38): 13503-13511, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37705201

RESUMEN

Nanofiltration polyamide (NF PA) membranes are widely used in seawater desalination and wastewater treatment due to their excellent permeability. The structure-activity relationship of PA membranes has attracted extensive attention in decades. In this work, NF PA membranes with planar structure, nodular structure, and peak-valley structure were constructed, and the pure water permeance was calculated by nonequilibrium molecular dynamics simulation to quantitatively investigate the structure-activity relationship between the microstructure and water permeance. Results showed that the peak-valley structure had the highest effective utilization rate of the membrane surface, which had the highest number of water molecules that passed through membranes per unit cross-sectional area (7.09). Furthermore, with the increase of the specific surface area ratio, the water permeance of the NF PA with peak-valley increased at a rate about 2.5 times than that of the planar NF PA. Therefore, some molecular scale insights were supplied about the structure-activity relationship of NF PA membranes, which is helpful for the fabrication of high-performance NF PA membranes.

7.
Environ Sci Technol ; 57(14): 5999-6007, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36996327

RESUMEN

A free-standing polyamide (PA) film is fabricated via in situ release from a thin-film composite (TFC) membrane achieved through the removal of the polysulfone support. The structure parameter S of the PA film is measured to be 24.2 ± 12.6 µm, which is about 87-fold of its film thickness. A significant decline in water flux of the PA film from an ideal forward osmosis membrane is observed. We find that the decline is predominantly influenced by the internal concentration polarization (ICP) of the PA film based on our experimental measurements and theoretical calculations. We propose that the asymmetric hollow structures of the PA layer with dense crusts and cavities may be the underlying cause of the occurrence of the ICP. More importantly, the structure parameter of the PA film can be reduced and its ICP effect can be mitigated by tuning its structures with fewer and shorter cavities. Our results for the first time provide experimental evidence to prove that the PA layer of the TFC membrane has the ICP effect, which could potentially provide fundamental insights into the influence of structural properties of PA on the membrane separation performance.


Asunto(s)
Nylons , Purificación del Agua , Nylons/química , Membranas Artificiales , Ósmosis , Agua/química , Purificación del Agua/métodos
8.
Small Methods ; 7(1): e2200966, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36440646

RESUMEN

Self-powered photodetectors have attracted widespread attention due to their low power consumption which can be driven by the built-in electric field instead of external power, but it is very difficult to achieve high responsivity and fast response speed concurrently. Here, a self-powered photodetector with light-induced electric field enhancement based on a 2D InSe/WSe2 /SnS2 van der Waals heterojunction is designed. The light-induced electric field derived from the photo-generated electrons of SnS2 accumulated at the SnS2 /WSe2 interface produces an additional negative gate voltage applied to the WSe2 layer, which enhances the built-in electric field in the InSe/WSe2 /SnS2 heterojunction. Accordingly, the photocurrent and photoresponse speed of the heterostructure device are largely improved. The self-powered photodetector based on the InSe/WSe2 /SnS2 heterostructure exhibits a high responsivity of 550 mA W-1 , which is a 50 times increase compared to the InSe/WSe2 photodetector, and the response speed (110/120 µs) is one order of magnitude faster than that of the InSe/WSe2 photodetector. The high responsivity and fast speed are caused by the stronger built-in electric field modulated by a light-induced electric field, which can separate carriers effectively and reduce drift times. This device architecture can provide a new avenue to fabricate high-responsivity, fast self-power photodetectors by utilizing the van der Waals heterojunction.

9.
Water Res ; 229: 119395, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36463677

RESUMEN

Membrane fouling was still a challenge for the potential application of forward osmosis (FO) in algae dewatering. In this study, the fouling behaviors of Chlorella vulgaris and Scenedesmus obliquus were compared in the FO membrane filtration process, and the roles of their soluble-extracellular polymeric substances (sEPS) and bound-EPS (bEPS) in fouling performance were investigated. The results showed that fouling behaviors could be divided into two stages including a quickly dropped and later a stable process. The bEPS of both species presented the highest flux decline (about 40.0%) by comparison with their sEPS, cells and broth. This performance was consistent with the largest dissolved organic carbon losses in feed solutions, and the highest interfacial free energy analyzed by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The chemical characterizations of algal foulants further showed that the severe fouling performance was also consistent with a proper ratio of carbohydrates and proteins contents in the cake layer, as well as the higher low molecular weight (LMW) components. Compared with the bEPS, the sEPS was crucial for the membrane fouling of S. obliquus, and an evolution of the membrane fouling structure was found in both species at the later filtration stage. This work clearly revealed the fundamental mechanism of FO membrane fouling caused by real microalgal suspension, and it will improve our understanding of the evolutionary fouling performances of algal EPS.


Asunto(s)
Chlorella vulgaris , Microalgas , Purificación del Agua , Matriz Extracelular de Sustancias Poliméricas , Membranas Artificiales , Purificación del Agua/métodos , Ósmosis
10.
Nat Commun ; 13(1): 7463, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460667

RESUMEN

Transplantation of mesenchymal stem cells (MSCs) holds promise to repair severe traumatic injuries. However, current transplantation practices limit the potential of this technique, either by losing the viable MSCs or reducing the performance of resident MSCs. Herein, we design a "bead-jet" printer, specialized for high-throughput intra-operative formulation and printing of MSCs-laden Matrigel beads. We show that high-density encapsulation of MSCs in Matrigel beads is able to augment MSC function, increasing MSC proliferation, migration, and extracellular vesicle production, compared with low-density bead or high-density bulk encapsulation of the equivalent number of MSCs. We find that the high-density MSCs-laden beads in sparse patterns demonstrate significantly improved therapeutic performance, by regenerating skeletal muscles approaching native-like cell density with reduced fibrosis, and regenerating skin with hair follicle growth and increased dermis thickness. MSC proliferation within 1-week post-transplantation and differentiation at 3 - 4 weeks post-transplantation are suggested to contribute therapy augmentation. We expect this "bead-jet" printing system to strengthen the potential of MSC transplantation.


Asunto(s)
Folículo Piloso , Células Madre Mesenquimatosas , Músculo Esquelético , Diferenciación Celular , Impresión Tridimensional
11.
ACS Appl Mater Interfaces ; 14(50): 55839-55849, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36511344

RESUMEN

Near-infrared (NIR) synaptic devices integrate NIR optical sensitivity and synaptic plasticity, emulating the basic biomimetic function of the human visual system and showing great potential in NIR artificial vision systems. However, the lack of semiconductor materials with appropriate band gaps for NIR photodetection and effective strategies for fabricating devices with synaptic behaviors limit the further development of NIR synaptic devices. Here, a two-terminal NIR synaptic device consisting of the In2Se3/MoS2 heterojunction has been constructed, and it exhibits fundamental synaptic functions. The reduced band gap and potential barrier of In2Se3/MoS2 heterojunctions are essential for NIR synaptic plasticity. In addition, the NIR synaptic properties of In2Se3/MoS2 heterojunctions under strain have been studied systematically. The ΔEPSC of the In2Se3/MoS2 synaptic device can be improved from 38.4% under no strain to 49.0% under a 0.54% strain with a 1060 nm illumination for 1 s at 100 mV. Furthermore, the artificial NIR vision system consisting of a 10 × 10 In2Se3/MoS2 device array has been fabricated, exhibiting image sensing, learning, and storage functions under NIR illumination. This research provides new ideas for the design of flexible NIR synaptic devices based on 2D materials and presents many opportunities in artificial intelligence and NIR vision systems.


Asunto(s)
Inteligencia Artificial , Molibdeno , Humanos , Biomimética , Aprendizaje , Sinapsis
12.
Langmuir ; 38(51): 16094-16103, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36512334

RESUMEN

N-Oxide zwitterionic polyethyleneimine (ZPEI), a new kind of aqueous phase monomer synthesized by commercially branched polyethyleneimine (PEI) via oxidation reaction, was prepared for fabrication of thin-film composite (TFC) polyamide membranes via interfacial polymerization. The main factors, including the monomer concentration and immersion time of the aqueous phase and organic phase, were investigated. Compared with PEI-TFC membranes, the obtained optimal defect-free ZPEI-TFC membranes exhibited a lower roughness (3.3 ± 0.3 nm), a better surface hydrophilicity, and a smaller pore size (238 Da of MWCO). The positively charged ZPEI-TFC membranes (isoelectric point at pH 8.05) showed higher rejections toward both divalent cationic (MgCl2, 93.0%) and anionic (Na2SO4, 96.1%) salts with a water permeation flux of up to 81.0 L·m-2·h-1 at 6 bar, which surpassed currently reported membranes. More importantly, mainly owing to N-oxide zwitterion with strong hydration capability, ZPEI-TFC membranes displayed a high flux recovery ratio (97.0%) toward a model protein contaminant (bovine serum albumin), indicating good anti-fouling properties. Therefore, the novel N-oxide zwitterion functionalized positively charged nanofiltration membranes provide an alternative for water desalination and sewage reclamation.


Asunto(s)
Nylons , Óxidos , Nylons/química , Polietileneimina , Membranas Artificiales , Agua/química
13.
ACS Nano ; 16(12): 21293-21302, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36468786

RESUMEN

Two-dimensional (2D) materials have attracted great attention in the field of photodetection due to their excellent electronic and optoelectronic properties. However, the weak optical absorption caused by atomically thin layers and the short lifetime of photocarriers limit their optoelectronic performance, especially for weak light detection. In this work, we design a high-gain photodetector induced by carrier recirculation based on a vertical InSe/GaSe heterojunction. In this architecture, the photogenerated holes are trapped in GaSe due to the built-in electric field, suppressing the recombination rate of photocarriers, so the electrons can recirculate for multiple times in the InSe channel following the generation of a single electron-hole pair, resulting a high photoconductive gain (107). The responsivity and detectivity of the InSe/GaSe heterojunction can reach 1037 A/W and 8.6 × 1013 Jones, which are 1 order of magnitude higher than those of individual InSe. More importantly, the InSe/GaSe heterojunction can respond to weaker light (1 µW/cm2) compared to individual InSe (10 µW/cm2). Utilizing GaSe as the channel and InSe as the electrons trapped layer, the same experimental phenomenon is achieved. This work can provide an approach for designing a highly sensitive device utilizing a 2D van der Waals heterojunction, and it also possesses wide applicability for other materials.

14.
Angew Chem Int Ed Engl ; 61(46): e202212816, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36148532

RESUMEN

Organic solvent nanofiltration (OSN) is an emerging membrane separation technology, which urgently requires robust, easily processed, OSN membranes possessing high permeance and small solutes-selectivity to facilitate enhanced industrial uptake. Herein, we describe the use of two 2,2'-biphenol (BIPOL) derivatives to fabricate hyper-crosslinked, microporous polymer nanofilms through IP. Ultra-thin, defect-free polyesteramide/polyester nanofilms (≈5 nm) could be obtained readily due to the relatively large molecular size and ionized nature of the BIPOL monomers retarding the rate of the IP. The enhanced microporosity arises from the hyper-crosslinked network structure and monomer rigidity. Specifically, the amino-BIPOL/PAN membrane exhibits extraordinary permselectivity performances with molecular weight cut-off as low as 233 Da and MeOH permeance of ≈13 LMH/bar. Precise separation of small dye mixtures with similar M.W. based on both their charge and molecular size are achieved.

15.
Int J Biol Macromol ; 220: 267-279, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985394

RESUMEN

In order to solve the problems of poor mechanical property, non-antibacterial and low flux of calcium alginate (CaAlg) membrane, silver nanoparticles (AgNPs) were synthesized with bovine serum albumin (BSA) and carboxymethyl chitosan (CMCS) for improving CaAlg membrane in this paper. Meanwhile, the dispersion property of silver nanoparticles and the mechanical property, thermal stability, antibacterial property and filtration efficiency of the composite membrane were explored. The results illustrated CMCS observably strengthened the mechanical property and thermal stability of the composite membrane, and AgNPs endowed the composite membrane with excellent antibacterial property. The flux of the BSA/CMCS/AgNPs/CaAlg composite membrane was raised compared to CaAlg membrane. Finally, the viscose fiber/polyethylene terephthalate fiber (VF-PET) nonwoven fabric was introduced as the support layer to further improve the filtration flux and mechanical property of the composite membrane. VF-PET/BSA/CMCS/AgNPs/CaAlg membrane had a rejection rate of over 99.0 % for dye molecules and <9.0 % for salt ions, while the flux maintained 38.5 L·m-2·h-1. Furthermore, VF-PET/BSA/CMCS/AgNPs/CaAlg membrane also had excellent separation effect on actual dye wastewater. The separation of dye and salt by the membrane mainly depended on the screening mechanism of membrane pore size, rather than adsorption. The composite membrane had an outstanding performance on the separation of dye molecules and inorganic salt ions.


Asunto(s)
Quitosano , Nanopartículas del Metal , Alginatos , Antibacterianos/farmacología , Hidrogeles , Tereftalatos Polietilenos , Albúmina Sérica Bovina , Plata , Aguas Residuales
16.
ACS Appl Mater Interfaces ; 14(14): 16453-16461, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35373556

RESUMEN

Tuning the optical and electrical properties of two-dimensional (2D) hexagonal boron nitride (hBN) is critical for its successful application in optoelectronics. Herein, we report a new methodology to significantly enhance the optoelectronic properties of hBN monolayers by substitutionally doping with sulfur (S) on a molten Au substrate using chemical vapor deposition. The S atoms are more geometrically and energetically favorable to be doped in the N sites than in the B sites of hBN, and the S 3p orbitals hybridize with the B 2p orbitals, forming a new conduction band edge that narrows its band gap. The band edge positions change with the doping concentration of S atoms. The conductivity increases up to 1.5 times and enhances the optoelectronic properties, compared to pristine hBN. A photodetector made of a 2D S-doped hBN film shows an extended wavelength response from 260 to 280 nm and a 50 times increase in its photocurrent and responsivity with light illumination at 280 nm. These enhancements are mainly due to the improved light absorption and increased electrical conductivity through doping with sulfur. This S-doped hBN monolayer film can be used in the next-generation electronics, optoelectronics, and spintronics.

17.
ACS Appl Mater Interfaces ; 14(5): 7175-7183, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099924

RESUMEN

Two-dimensional (2D) bismuth oxychalcogenide (Bi2O2X, X refers to S, Se, and Te) is one type of rising semiconductor with excellent electrical transport properties, high photoresponse, and good air stability. However, the research on 2D Bi2O2S is limited. In this work, ultrathin Bi2O2S nanosheets are synthesized by a facile and eco-friendly chemical synthesis method at room temperature. The thickness and lateral sizes are 2-4 nm and 20-40 nm, respectively. The 2D ultrathin Bi2O2S nanosheets have a broad absorption spectrum from ultraviolet (UV) to near-infrared (NIR). Photoelectrochemical (PEC) photodetectors based on 2D Bi2O2S nanosheets are fabricated by a simple drop-casting method. The 2D Bi2O2S-based PEC photodetectors show excellent photodetection performance with a broad photoresponse spectrum from 365 to 850 nm, a high responsivity of 13.0 mA/W, ultrafast response times of 10/45 ms, and good long-term stability at a bias voltage of 0.6 V, which are superior to most 2D material-based PEC photodetectors. Further, the 2D Bi2O2S PEC photodetector can function as a high-performance self-powered broadband photodetector. Moreover, the photoresponse performance can be effectively tuned by the concentration and the kind of electrolyte. Our results demonstrate that 2D Bi2O2S nanosheets hold great promise for application in high-performance optoelectronic devices.

18.
BMC Plant Biol ; 22(1): 43, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062882

RESUMEN

In desert habitats, sand burial is an important factor affecting germination of plant seeds and seedling growth. Xanthium spinosum has strong adaptability in arid desert areas, and is a common malignant invasive plant in Xinjiang, China. The effects of different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds was significantly different at sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased. Emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1-3 cm, and high burial depth (5-9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


Asunto(s)
Arena , Plantones/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Xanthium/crecimiento & desarrollo , Biomasa , China , Germinación/fisiología , Especies Introducidas
19.
Clin Exp Rheumatol ; 40(11): 2125-2132, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35084324

RESUMEN

OBJECTIVES: Our previous studies found that serum leptin was increased significantly in SLE, characterised by dysregulated autoreactive B cells producing excessive inflammatory cytokines and autoantibodies. The aim of this study was to explore the effects of leptin on B cell functions in SLE and clarify the key pathways in leptin dysregulated B cells. METHODS: Peripheral blood samples were obtained from 86 SLE patients and 28 normal controls. Purified B cells were stimulated with leptin or SLE serum and with or without anti-leptin antibody. The frequencies of CD19-CD138+ plasma cells and the expression of leptin receptor (LEPR) on B cells were determined with flow cytometry. The levels of antibodies and cytokines were assayed by ELISA. Classic signalling pathways were detected with western blotting method. RESULTS: Increased plasma cells and the levels of IgG and anti-dsDNA antibodies were positively correlated with serum leptin in SLE patients. LEPR+CD19+B cells were increased in SLE patients. Leptin up-regulated LEPR on B cells and activated B cells to produce higher levels of IL-6, IL-10 and TNF-α, and induced B cells to differentiated into plasma cells secreting more IgG and IgM. More importantly, anti-leptin neutralising antibody could partially restore increased cytokines, antibodies and plasma cells induced by SLE serum. Mechanistically, both leptin and SLE serum activated JAK/STAT3/5 and ERK1/2 signalling pathways in B cells, and the secretion-enhancing effects were restored by their inhibitors. CONCLUSIONS: Leptin may be a key factor leading to B cell dysfunction by activating JAK/STAT3/5 and ERK1/2 signalling pathways in SLE.


Asunto(s)
Linfocitos B , Leptina , Lupus Eritematoso Sistémico , Sistema de Señalización de MAP Quinasas , Humanos , Antígenos CD19 , Citocinas , Inmunoglobulina G , Factor de Transcripción STAT3 , Linfocitos B/citología
20.
Chemosphere ; 287(Pt 2): 132203, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34826908

RESUMEN

The increasing accumulation of pharmaceuticals in aquatic ecosystems could impair freshwater quality and threaten human health. Despite the adsorption of pharmaceuticals on biochars is one of the most cost-effective and eco-friendly removal methods, the wide variation of experimental designs and research aims among previous studies pose significant challenge in selecting biochar for optimal removal. In this work, literature data of 1033 sets with 21 variables collected from 267 papers over ten years (2010-2020) covering 19 pharmaceuticals onto 88 biochars were assessed by different machine learning (ML) algorithms i.e., Linear regression model (LM), Feed-forward neural networks (NNET), Deep neutral networks (DNN), Cubist, K-nearest neighbor (KNN), and Random forest (RF), to predict equilibrium adsorption capacity (Qe) and explore adsorption mechanisms. LM showed the best performance on ranking importance of input variables. Except for initial concentration of pharmaceuticals, Qe was strongly governed by biochars' properties including specific surface area (BET), pore volume (PV), and pore structure (PS) rather than pharmaceuticals' properties and experimental conditions. The most accurate model for estimating Qe was achieved by Cubist, followed by KNN, RF, KNN, NNET and LM. The generalization ability was observed by the tuned Cubist with 26 rules for the prediction of the unseen data. This study not only provides an insightful evidence for data-based adsorption mechanisms of pharmaceuticals on biochars, but also offers a potential method to accurately predict the biochar adsorption performance without conducting any experiments, which will be of high interests in practice in terms of water/wastewater treatment using biochars.


Asunto(s)
Preparaciones Farmacéuticas , Proyectos de Investigación , Adsorción , Carbón Orgánico , Ecosistema , Humanos , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...