RESUMEN
Zeolitic imidazolate framework-8 (ZIF-8) was evenly loaded on the surface of TiO2 doped with KI, using a solvent synthesis method, in order to produce a ZIF-8@TiO2 (KI) adsorption photocatalyst with good adsorption and photocatalytic properties. The samples were characterized by XRD, SEM, EDX, XPS, BET and UV-Vis. The photocatalytic efficiency of the material was obtained by photocatalytic tests. The results indicate that the doping with I inhibited the grain growth and reduced the crystallite size of TiO2, reduced the band gap width and improved the utilization rate for light. TiO2 (KI) was a single crystal of anatase titanium dioxide. The combination of ZIF-8 and TiO2 (KI) improved the specific surface area and increased the reaction site. The ZIF-8@TiO2 (KI) for Congo red was investigated to validate its photocatalytic performance. The optimal concentration of Congo red solution was 30 mg/L, and the amount of catalyst was proportional to the degradation efficiency. The degradation efficiency of ZIF-8@TiO2 (5%KI) was 76.42%, after being recycled four times.
RESUMEN
A novel Mg(II) metal-organic framework (Mg-MOF) was synthesized based on the ligand of 2,2'-bipyridine-4,4'-dicarboxylic acid. Single-crystal X-ray structural analysis confirmed that three-dimensional-nanostructure Mg-MOFs formed a monoclinic system with a channel size of 15.733 Å × 23.736 Å. N2 adsorption isotherm, Fourier transform infrared spectroscopy, thermogravimetric analysis and high-resolution transmission electron microscopy were performed to characterize the thermal stability and purity of the Mg-MOFs. The adsorption studies on four typical volatile organic compounds (VOCs) emitted during wood drying showed that Mg-MOFs have noteworthy adsorption capacities, especially for benzene and ß-pinene with adsorptions of 182.26 mg g-1 and 144.42 mg g-1, respectively. In addition, the adsorption of Mg-MOFs mainly occurred via natural adsorption, specifically, multi-layer physical adsorption, accompanied by chemical forces, which occurred in the pores where the VOCs molecules combined with active sites. As an adsorbent, Mg-MOFs exhibit versatile behaviour for toxic gas accumulation.
RESUMEN
Lignocellulose (LCE) was ultrasonically treated and intercalated into magnesium aluminum silicate (MOT) clay to prepare a nano-lignocellulose magnesium aluminum silicate polymer gel (nano-LCE-MOT) for the removal of Zn (II) from aqueous solution. The product was characterised using nitrogen adsorption/desorption isotherm measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The conditions for the adsorption of Zn (II) on nano-LCE-MOT were screened, and adsorption kinetics and isotherm model analysis were carried out to explore the adsorption mechanism and achieve the optimal adsorption of Zn (II). Optimal adsorption was achieved at an initial Zn (II) concentration of 800 mg/L at 60 °C in 160 min at a pH of 4.52. The adsorption kinetics were explored using a pseudo-second-order model, with the isotherm adsorption equilibrium found to conform to the Langmuir model. The maximum adsorption capacity of the nano-LCE-MOT polymer gel toward Zn (II) is 513.48 mg/g. The materials with adsorbed Zn (II) were desorbed using different media, with HCl found to be the most ideal medium to desorb Zn (II). The optimal desorption of Zn (II) was achieved in 0.08 mol/L HCl solution at 65 °C in 60 min. Under these conditions, Zn (II) was almost completely desorbed from the adsorbents, with the adsorption effect after cycling being slightly different from that of the initial adsorption.
RESUMEN
Zeolitic imidazolate framework-8 (ZIF-8) was doped with a rare-earth metal, Eu, using a solvent synthesis method evenly on the surface of a mixed-crystal TiO2(Mc-TiO2) structure in order to produce a core-shell structure composite ZIF-8(Eu)@Mc-TiO2 adsorption photocatalyst with good adsorption and photocatalytic properties. The characterisation of ZIF-8(Eu)@Mc-TiO2 was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET) and ultraviolet-visible light differential reflectance spectroscopy (UV-DRs). The results indicated that Eu-doped ZIF-8 was formed evenly on the Mc-TiO2 surface, a core-shell structure formed and the light-response range was enhanced greatly. The ZIF-8(Eu)@Mc-TiO2 for basic fuchsin was investigated to validate its photocatalytic performance. The effect of the Eu doping amount, basic fuchsin concentration and photocatalyst dosage on the photocatalytic efficiency were investigated. The results revealed that, when 5%-Eu-doped ZIF-8(Eu)@Mc-TiO2 (20 mg) was combined with 30 mg/L basic fuchsin (100 mL) under UV irradiation for 1 h, the photocatalytic efficiency could reach 99%. Further, it exhibited a good recycling performance. Thus, it shows certain advantages in its degradation rate and repeatability compared with previously reported materials. All of these factors suggested that, in an aqueous medium, ZIF-8(Eu)@Mc-TiO2 is an eco-friendly, sustainable and efficient material for the photocatalytic degradation of basic fuchsin.