RESUMEN
Preventing malaria during pregnancy is of critical importance, yet there are no approved malaria vaccines for pregnant women due to lack of efficacy results within this population. Conducting a randomized trial in pregnant women throughout the entire duration of pregnancy is impractical. Instead, a randomized trial was conducted among women of childbearing potential (WOCBP), and some participants became pregnant during the 2-year study. We explore a statistical method for estimating vaccine effect within the target subpopulation-women who can naturally become pregnant, namely, women who can become pregnant under a placebo condition-within the causal inference framework. Two vaccine effect estimators are employed to effectively utilize baseline characteristics and account for the fact that certain baseline characteristics were only available from pregnant participants. The first estimator considers all participants but can only utilize baseline variables collected from the entire participant pool. In contrast, the second estimator, which includes only pregnant participants, utilizes all available baseline information. Both estimators are evaluated numerically through simulation studies and applied to the WOCBP trial to assess vaccine effect against pregnancy malaria.
RESUMEN
BACKGROUND: Plasmodium falciparum parasitaemia during pregnancy causes maternal, fetal, and infant mortality. Poor pregnancy outcomes are related to blood-stage parasite sequestration and the ensuing inflammatory response in the placenta, which decreases over successive pregnancies. A radiation-attenuated, non-replicating, whole-organism vaccine based on P falciparum sporozoites (PfSPZ Vaccine) has shown efficacy at preventing infection in African adults. Here, we aimed to examine vaccine safety and efficacy of the PfSPZ Vaccine in adults and women who anticipated conception. METHODS: Two randomised, double-blind, placebo-controlled trials (phase 1 MLSPZV3 and phase 2 MLSPZV4) were conducted at a clinical research centre in Mali. MLSPZV3 included adults aged 18-35 years and MLSPZV4 included non-pregnant women aged 18-38 years who anticipated conception within a year of enrolment. In MLSPZV3, participants were stratified by village and randomly assigned (2:1) using block randomisation to receive three doses of 9â×â105 PfSPZ Vaccine or saline placebo at weeks 0, 1, and 4 (4-week schedule) or at weeks 0, 8, and 16 (16-week schedule) and a booster dose around 1 year later. In MLSPZV4, women received presumptive artemether-lumefantrine twice per day for 3 days 2 weeks before dose one and were randomly assigned (1:1:1) using block randomisation to receive three doses of 9â×â105 or 1·8â×â106 PfSPZ Vaccine or saline placebo all administered at weeks 0, 1, and 4 (4-week schedule). Participants in both studies received artemether-lumefantrine 2 weeks before dose three and additionally 2 weeks before dose four (booster dose) in MLSPZV3. Investigators and participants were masked to group assignment. The primary outcome, assessed in the as-treated population, was PfSPZ Vaccine safety and tolerability within 7 days after each dose. The secondary outcome, assessed in the modified intention-to-treat population, was vaccine efficacy against P falciparum parasitaemia (defined as the time-to-first positive blood smear) from dose three until the end of transmission season. In exploratory analyses, MLSPZV4 evaluated incidence of maternal obstetric and neonatal outcomes as safety outcomes, and vaccine efficacy against P falciparum parasitaemia during pregnancy (defined as time-to-first positive blood smear post-conception). In MLSPZV4, women were followed at least once a month with human chorionic gonadotropin testing, and those who became pregnant received standard of care (including intermittent presumptive sulfadoxine-pyrimethamine antimalarial drugs after the first trimester) during routine antenatal visits. These studies are registered with ClinicalTrials.gov, NCT03510481 and NCT03989102. FINDINGS: Participants were enrolled for vaccination during the onset of malaria seasons for two sequential studies conducted from 2018 to 2019 for MLSPZV3 and from 2019 to 2021 for MLSPZV4, with follow-up during malaria seasons across 2 years. In MLSPZV3, 478 adults were assessed for eligibility, of whom 220 were enrolled between May 30 and June 12, 2018, and then between Aug 13 and Aug 18, 2018, and 210 received dose one. 66 (96%) of 69 participants who received the 16-week schedule and 68 (97%) of 70 who received the 4-week schedule of the 9â×â105 PfSPZ Vaccine and 70 (99%) of 71 who received saline completed all three doses in year 1. In MLSPZV4, 407 women were assessed for eligibility, of whom 324 were enrolled from July 3 to July 27, 2019, and 320 received dose one of presumptive artemether-lumefantrine. 300 women were randomly assigned with 100 per group (PfSPZ Vaccine 9â×â105, 1·8â×â106, or saline) receiving dose one. First trimester miscarriages were the most commonly reported serious adverse event but occurred at a similar rate across study groups (eight [15%] of 54 with 9â×â105 PfSPZ Vaccine, 12 [21%] of 58 with 1·8â×â106 PfSPZ Vaccine, and five [12%] of 43 with saline). One unrelated maternal death occurred 425 days after the last vaccine dose in the 1·8â×â106 PfSPZ Vaccine group due to peritonitis shortly after childbirth. Most related adverse events reported in MLSPZV3 and MLSPZV4 were mild (grade 1) and frequency of adverse events in the PfSPZ Vaccine groups did not differ from that in the saline group. Two unrelated serious adverse events occurred in MLSPZV3 (one participant had appendicitis in the 9â×â105 PfSPZ Vaccine group and the other in the saline group died due to a road traffic accident). In MLSPZV3, the 9â×â105 PfSPZ Vaccine did not show vaccine efficacy against parasitaemia with the 4-week (27% [95% CI -18 to 55] in year 1 and 42% [-5 to 68] in year 2) and 16-week schedules (16% [-34 to 48] in year 1 and -14% [-95 to 33] in year 2); efficacies were similar or worse against clinical malaria compared with saline. In MLSPZV4, the PfSPZ Vaccine showed significant efficacy against parasitaemia at doses 9â×â105 (41% [15 to 59]; p=0·0069 in year 1 and 61% [36 to 77]; p=0·0011 in year 2) and 1·8â×â106 (54% [34 to 69]; p<0·0001 in year 1 and 45% [13 to 65]; p=0·029 in year 2); and against clinical malaria at doses 9â×â105 (47% [20 to 65]; p=0·0045 in year 1 and 56% [22 to 75]; p=0·0081 in year 2) and 1·8â×â106 (48% [22 to 65]; p=0·0013 in year 1 and 40% [2 to 64]; p=0·069 in year 2). Vaccine efficacy against post-conception P falciparum parasitaemia during first pregnancies that arose in the 2-year follow-up was 57% (14 to 78; p=0·017) in the 9 × 105 PfSPZ Vaccine group versus 49% (3 to 73; p=0·042) in the 1·8â×â106 PfSPZ Vaccine group. Among 55 women who became pregnant within 24 weeks after dose three, vaccine efficacy against parasitaemia was 65% (23 to 84; p=0·0088) with the 9â×â105 PfSPZ Vaccine and 86% (64 to 94; p<0·0001) with the 1·8â×â106 PfSPZ Vaccine. When combined in a post-hoc analysis, women in the PfSPZ Vaccine groups had a non-significantly reduced time-to-first pregnancy after dose one compared with those in the saline group (log-rank test p=0·056). Exploratory maternal obstetric and neonatal outcomes did not differ significantly between vaccine groups and saline. INTERPRETATION: PfSPZ Vaccine was safe and well tolerated in adults in Mali. The 9â×â105 and 1·8â×â106 doses of PfSPZ Vaccine administered as per the 4-week schedule, which incorporated presumptive antimalarial treatment before the first vaccine dose, showed significant efficacy against P falciparum parasitaemia and clinical malaria for two malaria transmission seasons in women of childbearing age and against pregnancy malaria. PfSPZ Vaccine without presumptive antimalarial treatment before the first vaccine dose did not show efficacy. FUNDING: National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Sanaria.
RESUMEN
In precision medicine, there is much interest in estimating the expected-to-benefit (EB) subset, i.e. the subset of patients who are expected to benefit from a new treatment based on a collection of baseline characteristics. There are many statistical methods for estimating the EB subset, most of which produce a 'point estimate' without a confidence statement to address uncertainty. Confidence intervals for the EB subset have been defined only recently, and their construction is a new area for methodological research. This article proposes a pseudo-response approach to EB subset estimation and confidence interval construction. Compared to existing methods, the pseudo-response approach allows us to focus on modelling a conditional treatment effect function (as opposed to the conditional mean outcome given treatment and baseline covariates) and is able to incorporate information from baseline covariates that are not involved in defining the EB subset. Simulation results show that incorporating such covariates can improve estimation efficiency and reduce the size of the confidence interval for the EB subset. The methodology is applied to a randomized clinical trial comparing two drugs for treating HIV infection.
RESUMEN
BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Malaria Falciparum , Adulto , Niño , Femenino , Humanos , Masculino , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Enfermedades Endémicas/prevención & control , Inyecciones Subcutáneas , Estimación de Kaplan-Meier , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malí/epidemiología , Plasmodium falciparum , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Terapia por Observación Directa , Combinación Arteméter y Lumefantrina/administración & dosificación , Combinación Arteméter y Lumefantrina/uso terapéutico , Adulto Joven , Persona de Mediana EdadRESUMEN
Ebola virus disease (EVD) is a filoviral infection caused by virus species of the Ebolavirus genus including Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV). We investigated the safety and immunogenicity of a heterologous prime-boost regimen involving a chimpanzee adenovirus 3 vectored Ebola vaccine [either monovalent (cAd3-EBOZ) or bivalent (cAd3-EBO)] prime followed by a recombinant modified vaccinia virus Ankara EBOV vaccine (MVA-EbolaZ) boost in two phase 1/1b randomized open-label clinical trials in healthy adults in the United States (US) and Uganda (UG). Trial US (NCT02408913) enrolled 140 participants, including 26 EVD vaccine-naïve and 114 cAd3-Ebola-experienced participants (April-November 2015). Trial UG (NCT02354404) enrolled 90 participants, including 60 EVD vaccine-naïve and 30 DNA Ebola vaccine-experienced participants (February-April 2015). All tested vaccines and regimens were safe and well tolerated with no serious adverse events reported related to study products. Solicited local and systemic reactogenicity was mostly mild to moderate in severity. The heterologous prime-boost regimen was immunogenic, including induction of durable antibody responses which peaked as early as two weeks and persisted up to one year after each vaccination. Different prime-boost intervals impacted the magnitude of humoral and cellular immune responses. The results from these studies demonstrate promising implications for use of these vaccines in both prophylactic and outbreak settings.
RESUMEN
OBJECTIVES: People with HIV-1 (PWH) on effective antiretroviral therapy (ART) continue to exhibit chronic systemic inflammation, immune activation, and persistent elevations in markers of HIV-1 infection [including HIV-DNA, cell-associated HIV-RNA (CA HIV-RNA), and antibodies to HIV-1 proteins] despite prolonged suppression of plasma HIV-RNA levels less than 50âcopies/ml. Here, we investigated the hypothesis that nonreplicating but transcriptionally and translationally competent 'defective' HIV-1 proviruses may be one of drivers of these phenomena. DESIGN: A combined cohort of 23 viremic and virologically suppressed individuals on ART were studied. METHODS: HIV-DNA, CA HIV-RNA, western blot score (measure of anti-HIV-1 antibodies as a surrogate for viral protein expression in vivo ), and key biomarkers of inflammation and coagulation (IL-6, hsCRP, TNF-alpha, tissue factor, and D-dimer) were measured in peripheral blood and analyzed using a combined cross-sectional and longitudinal approaches. Sequences of HIV-DNA and CA HIV-RNA obtained via 5'-LTR-to-3'-LTR PCR and single-genome sequencing were also analyzed. RESULTS: We observed similar long-term persistence of multiple, unique, transcriptionally active 'defective' HIV-1 provirus clones (average: 11 years., range: 4-20 years) and antibody responses against HIV-1 viral proteins among all ART-treated participants evaluated. A direct correlation was observed between the magnitude of HIV-1 western blot score and the levels of transcription of 'defective' HIV-1 proviruses ( r â=â0.73, P â<â0.01). Additional correlations were noted between total CD8 + T-cell counts and HIV-DNA ( r â=â0.52, P â=â0.01) or CA HIV-RNA ( r â=â0.65, P â<â0.01). CONCLUSION: These findings suggest a novel interplay between transcription and translation of 'defective' HIV-1 proviruses and the persistent immune activation seen in the setting of treated chronic HIV-1 infection.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Provirus/genética , VIH-1/fisiología , Estudios Transversales , Linfocitos T CD4-Positivos , ADN Viral , ARN Viral , Proteínas Virales , InflamaciónRESUMEN
Planting a deep-rooted green manure (GM) (more than 1.0 m depth) greatly improves soil fertility and reduces the loss of nutrients. However, few studies have examined the response of soil nitrogen (N) distribution in the soil profile and subsoil N recovery to the long-term planting and incorporation of deep-rooted GM. Based on a 12-year (2009−2021) experiment of spring maize-winter GMs rotation in the North China Plain (NCP), this study investigated the effects of different GMs that were planted over the winter, including ryegrass (RrG, Lolium L.) (>1.0 m), Orychophragmus violaceus (OrV, Orychophragmus violaceus L.) (>0.8 m), and hairy vetch (VvR, Vicia villosa Roth.) (>1.0 m), on the spring maize yield, N distribution in the deep soil profile, N use efficiencies, functional gene abundances involving soil nitrification−denitrification processes and N2O production. Compared with the winter fallow, the maize yield significantly increased by 11.6% after 10 years of green manuring, and water storage in 0−200 cm soil profile significantly increased by 5.0−17.1% at maize seedling stage. The total N content in the soil layer at 0−90 cm increased by 15.8−19.7%, while the nitrate content in the deep soil layer (80−120 cm) decreased by 17.8−39.6%. Planting GM significantly increased the N recovery rate (10.4−32.7%) and fertilizer N partial productivity (4.6−13.3%). Additionally, the topsoil N functional genes (ammonia-oxidizing archaea amoA, ammonia-oxidizing bacterial amoA, nirS, nirK) significantly decreased without increasing N2O production potential. These results indicated that long-term planting of the deep-rooted GM effectively reduce the accumulation of nitrates in the deep soil and improve the crop yield and N use efficiencies, demonstrating a great value in green manuring to improve the fertility of the soil, increase the crop yield, and reduce the risk of N loss in NCP.
RESUMEN
BACKGROUND: Human monoclonal antibodies might offer an important new approach to reduce malaria morbidity and mortality. In the first two parts of a three-part clinical trial, the antimalarial monoclonal antibody CIS43LS conferred high protection against parasitaemia at doses of 20 mg/kg or 40 mg/kg administered intravenously followed by controlled human malaria infection. The ability of CIS43LS to confer protection at lower doses or by the subcutaneous route is unknown. We aimed to provide data on the safety and optimisation of dose and route for the human antimalaria monoclonal antibody CIS43LS. METHODS: VRC 612 Part C was the third part of a three-part, first-in-human, phase 1, adaptive trial, conducted at the University of Maryland, Baltimore Center for Vaccine Development and Global Health, Baltimore, MD, USA. We enrolled adults aged 18-50 years with no previous malaria vaccinations or infections, in a sequential, dose-escalating manner. Eligible participants received the monoclonal antibody CIS43LS in a single, open-label dose of 1 mg/kg, 5 mg/kg, or 10 mg/kg intravenously, or 5 mg/kg or 10 mg/kg subcutaneously. Participants underwent controlled human malaria infection by the bites of five mosquitoes infected with Plasmodium falciparum 3D7 strain approximately 8 weeks after their monoclonal antibody inoculation. Six additional control participants who did not receive CIS43LS underwent controlled human malaria infection simultaneously. Participants were followed-up daily on days 7-18 and day 21, with qualitative PCR used for P falciparum detection. Participants who tested positive for P falciparum were treated with atovaquone-proguanil and those who remained negative were treated at day 21. Participants were followed-up until 24 weeks after dosing. The primary outcome was safety and tolerability of CIS43LS at each dose level, assessed in the as-treated population. Secondary outcomes included protective efficacy of CIS43LS after controlled human malaria infection. This trial is now complete and is registered with ClinicalTrials.gov, NCT04206332. FINDINGS: Between Sept 1, 2021, and Oct 29, 2021, 47 people were assessed for eligibility and 31 were enrolled (one subsequently withdrew and was replaced) and assigned to receive doses of 1 mg/kg (n=7), 5 mg/kg (n=4), and 10 mg/kg (n=3) intravenously and 5 mg/kg (n=4) and 10 mg/kg (n=4) subcutaneously, or to the control group (n=8). CIS43LS administration was safe and well tolerated; no serious adverse events occurred. CIS43LS protected 18 (82%) of 22 participants who received a dose. No participants developed parasitaemia following dosing at 5 mg/kg intravenously or subcutaneously, or at 10 mg/kg intravenously or subcutaneously. All six control participants and four of seven participants dosed at 1 mg/kg intravenously developed parasitaemia after controlled human malaria infection. INTERPRETATION: CIS43LS was safe and well tolerated, and conferred protection against P falciparum at low doses and by the subcutaneous route, providing evidence that this approach might be useful to prevent malaria across several clinical use cases. FUNDING: National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria Falciparum , Adulto , Animales , Humanos , Anticuerpos Monoclonales/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Plasmodium falciparum , Vacunas contra la Malaria/uso terapéuticoRESUMEN
BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).
Asunto(s)
Anticuerpos Monoclonales Humanizados , Antimaláricos , Malaria Falciparum , Adulto , Humanos , Antimaláricos/efectos adversos , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/diagnóstico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Cefalea/inducido químicamenteRESUMEN
BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).
Asunto(s)
Anticuerpos Monoclonales , Malaria , Administración Cutánea , Administración Intravenosa , Adulto , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Niño , Preescolar , Humanos , Malaria/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Parasitemia/parasitología , Plasmodium falciparumRESUMEN
Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.
Asunto(s)
Regulación de la Expresión Génica , Genómica , Humanos , ARN Mensajero/genética , Reproducibilidad de los ResultadosRESUMEN
It is challenging to evaluate the genetic impacts on a biologic feature and separate them from environmental impacts. This is usually achieved through twin studies by assessing the collective genetic impact defined by the differential correlation in monozygotic twins vs dizygotic twins. Since the underlying order in a twin, determined by latent genetic factors, is unknown, the observed twin data are unordered. Conventional methods for correlation are not appropriate. To handle the missing order, we model twin data by a mixture bivariate distribution and estimate under two likelihood functions: the likelihood over the monozygotic and dizygotic twins separately, and the likelihood over the two twin types combined. Both likelihood estimators are consistent. More importantly, the combined likelihood overcomes the drawback of mixture distribution estimation, namely, the slow convergence. It yields correlation coefficient estimator of root-n consistency and allows effective statistical inference on the collective genetic impact. The method is demonstrated by a twin study on immune traits.
Asunto(s)
Gemelos Dicigóticos , Gemelos Monocigóticos , Humanos , Funciones de Verosimilitud , Fenotipo , Estudios en Gemelos como Asunto , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genéticaRESUMEN
BACKGROUND: WHO recently approved a partially effective vaccine that reduces clinical malaria in children, but increased vaccine activity is required to pursue malaria elimination. A phase 1 clinical trial was done in Mali, west Africa, to assess the safety, immunogenicity, and protective efficacy of a three-dose regimen of Plasmodium falciparum sporozoite (PfSPZ) Vaccine (a metabolically active, non-replicating, whole malaria sporozoite vaccine) against homologous controlled human malaria infection (CHMI) and natural P falciparum infection. METHODS: We recruited healthy non-pregnant adults aged 18-50 years in Donéguébougou, Mali, and surrounding villages (Banambani, Toubana, Torodo, Sirababougou, Zorokoro) for an open-label, dose-escalation pilot study and, thereafter, a randomised, double-blind, placebo-controlled main trial. Pilot study participants were enrolled on an as-available basis to one group of CHMI infectivity controls and three staggered vaccine groups receiving: one dose of 4·5 × 105, one dose of 9 × 105, or three doses of 1·8 × 106 PfSPZ via direct venous inoculation at approximately 8 week intervals, followed by homologous CHMI 5 weeks later with infectious PfSPZ by direct venous inoculation (PfSPZ Challenge). Main cohort participants were stratified by village and randomly assigned (1:1) to receive three doses of 1·8 × 106 PfSPZ or normal saline at 1, 13, and 19 week intervals using permuted block design by the study statistician. The primary outcome was safety and tolerability of at least one vaccine dose; the secondary outcome was vaccine efficacy against homologous PfSPZ CHMI (pilot study) or against naturally transmitted P falciparum infection (main study) measured by thick blood smear. Combined artesunate and amodiaquine was administered to eliminate pre-existing parasitaemia. Outcomes were analysed by modified intention to treat (mITT; including all participants who received at least one dose of investigational product; safety and vaccine efficacy) and per protocol (vaccine efficacy). This trial is registered with ClinicalTrials.gov, number NCT02627456. FINDINGS: Between Dec 20, 2015, and April 30, 2016, we enrolled 56 participants into the pilot study (five received the 4·5 × 105 dose, five received 9 × 105, 30 received 1·8 × 106, 15 were CHMI controls, and one withdrew before vaccination) and 120 participants into the main study cohort with 60 participants assigned PfSPZ Vaccine and 60 placebo in the main study. Adverse events and laboratory abnormalities post-vaccination in all dosing groups were few, mainly mild, and did not differ significantly between vaccine groups (all p>0·05). Unexpected severe transaminitis occured in four participants: one participant in pilot phase that received 1·8 × 106 PfSPZ Vaccine, one participant in main phase that received 1·8 × 106 PfSPZ Vaccine, and two participants in the main phase placebo group. During PfSPZ CHMI, approximately 5 weeks after the third dose of 1·8 × 106 PfSPZ, none of 29 vaccinees and one of 15 controls became positive on thick blood smear; subsequent post-hoc PCR analysis for submicroscopic blood stage infections detected P falciparum parasites in none of the 29 vaccine recipients and eight of 15 controls during CHMI. In the main trial, 32 (58%) of 55 vaccine recipients and 42 (78%) of 54 controls became positive on thick blood smear during 24-week surveillance after vaccination. Vaccine efficacy (1-hazard ratio) was 0·51 per protocol (95% CI 0·20-0·70; log-rank p=0·0042) and 0·39 by mITT (0·04-0·62; p=0·033); vaccine efficacy (1-risk ratio) was 0·24 per-protocol (0·02-0·41; p=0·031) and 0·22 mITT (0·01-0·39; p=0·041). INTERPRETATION: A three-dose regimen of PfSPZ Vaccine was safe, well tolerated, and conferred 51% vaccine efficacy against intense natural P falciparum transmission, similar to 52% vaccine efficacy reported for a five-dose regimen in a previous trial. FUNDING: US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Sanaria. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adolescente , Adulto , Animales , Niño , Método Doble Ciego , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malí , Persona de Mediana Edad , Proyectos Piloto , Plasmodium falciparum , Estaciones del Año , Esporozoítos , Adulto JovenRESUMEN
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Genes env , Genes gag , Anticuerpos Anti-VIH/biosíntesis , VIH-1/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , Anticuerpos Anti-VIH/inmunología , Inmunización Secundaria , Macaca mulatta , Factores de Riesgo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas de ARNm/administración & dosificaciónRESUMEN
BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antimaláricos/uso terapéutico , Malaria Falciparum/prevención & control , Adulto , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Antiprotozoarios/sangre , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Relación Dosis-Respuesta a Droga , Voluntarios Sanos , Humanos , Infusiones Intravenosas/efectos adversos , Inyecciones Subcutáneas/efectos adversos , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Plasmodium falciparum/aislamiento & purificaciónRESUMEN
Observational studies usually include participants representing the wide heterogeneous population. The conditional causal effect, treatment effect conditional on baseline characteristics, is of practical importance. Its estimation is subject to two challenges. First, the causal effect is not observable in any individual due to counterfactuality. Second, high-dimensional baseline variables are involved to satisfy the ignorable treatment selection assumption and to attain better estimation efficiency. In this work, a nonparametric estimation procedure, along with a pseudo-response, is proposed to estimate the conditional treatment effect through "characteristic score"-a parsimonious representation of baseline variable influence on treatment benefit. Adopting sparse dimension reduction with variable prescreening in the proposed estimation, we aim to identify the key baseline variables that impact the conditional treatment effect and to uncover the characteristic score that best predicts the treatment effect. This approach is applied to an HIV study for assessing the benefit of antiretroviral regimens and identifying the beneficiary subpopulation.
Asunto(s)
Causalidad , HumanosRESUMEN
Glucocorticoids are considered first-line therapy in a variety of eosinophilic disorders. They lead to a transient, profound decrease in circulating human eosinophils within hours of administration. The phenomenon of glucocorticoid-induced eosinopenia has been the basis for the use of glucocorticoids in eosinophilic disorders, and it has intrigued clinicians for 7 decades, yet its mechanism remains unexplained. To investigate, we first studied the response of circulating eosinophils to in vivo glucocorticoid administration in 3 species and found that the response in rhesus macaques, but not in mice, closely resembled that in humans. We then developed an isolation technique to purify rhesus macaque eosinophils from peripheral blood and performed live tracking of zirconium-89-oxine-labeled eosinophils by serial positron emission tomography/computed tomography imaging, before and after administration of glucocorticoids. Glucocorticoids induced rapid bone marrow homing of eosinophils. The kinetics of glucocorticoid-induced eosinopenia and bone marrow migration were consistent with those of the induction of the glucocorticoid-responsive chemokine receptor CXCR4, and selective blockade of CXCR4 reduced or eliminated the early glucocorticoid-induced reduction in blood eosinophils. Our results indicate that glucocorticoid-induced eosinopenia results from CXCR4-dependent migration of eosinophils to the bone marrow. These findings provide insight into the mechanism of action of glucocorticoids in eosinophilic disorders, with implications for the study of glucocorticoid resistance and the development of more targeted therapies. The human study was registered at ClinicalTrials.gov as #NCT02798523.
Asunto(s)
Médula Ósea/inmunología , Eosinófilos/inmunología , Glucocorticoides/efectos adversos , Leucopenia/inducido químicamente , Leucopenia/inmunología , Receptores CXCR4/inmunología , Animales , Médula Ósea/patología , Eosinófilos/patología , Femenino , Glucocorticoides/administración & dosificación , Humanos , Leucopenia/patología , Macaca mulatta , Masculino , RatonesRESUMEN
BACKGROUND: Human monoclonal antibodies that potently and broadly neutralise HIV-1 are under development to prevent and treat HIV-1 infection. In this phase 1 clinical trial we aimed to determine the safety, tolerability, and pharmacokinetic profile of the broadly neutralising monoclonal antibody VRC07-523LS, an engineered variant of VRC01 that targets the CD4 binding site of the HIV-1 envelope protein. METHODS: This phase 1, open-label, dose-escalation clinical trial was done at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Individuals were recruited from the greater Washington, DC, area by IRB-approved written and electronic media. We enrolled healthy, HIV-1-negative adults aged 18-50 years. Inclusion criteria were good general health, measured through clinical laboratory tests, medical history, and physical examination. Participants self-selected into one of seven open groups during enrolment without randomisation. Four groups received a single intravenous dose of 1, 5, 20, or 40 mg/kg of VRC07-523LS, and one group received a single 5 mg/kg subcutaneous dose. Two groups received three doses of either 20 mg/kg intravenous VRC07-523LS, or 5 mg/kg subcutaneous VRC07-523LS at 12-week intervals. The primary outcome was the safety and tolerability of VRC07-523LS, assessed by dose, route, and number of administrations. This study is registered with ClinicalTrials.gov, NCT03015181. FINDINGS: Between Feb 21, 2017, and September 13, 2017, we enrolled 26 participants, including 11 (42%) men and 15 (58%) women. Two (8%) participants withdrew from the study early: one participant in group 1 enrolled in the study but never received VRC07-523LS, and one participant in group 6 chose to withdraw after a single administration. One (4%) participant in group 7 received only one of the three scheduled administrations. 17 participants received intravenous administrations and 8 participants received subcutaneous administrations. VRC07-523LS was safe and well tolerated, we observed no serious adverse events or dose-limiting toxic effects. All reported local and systemic reactogenicity was mild to moderate in severity. The most commonly reported symptoms following intravenous administration were malaise or myalgia in three (18%) participants and headache or chills in two (12%) participants. The most commonly reported symptoms following subcutaneous administration were pain and tenderness in four participants (50%) and malaise or headache in three (38%) participants. INTERPRETATION: Safe and well tolerated, VRC07-523LS is a strong and practical candidate for inclusion in HIV-1 prevention and therapeutic strategies. The results from this trial also indicate that an HIV-1 broadly neutralising monoclonal antibody engineered for improved pharmacokinetic and neutralisation properties can be safe for clinical use. FUNDING: National Institutes of Health.
Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Infecciones por VIH/tratamiento farmacológico , Administración Cutánea , Administración Intravenosa , Adulto , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/efectos adversos , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
We consider causal inference in observational studies with choice-based sampling, in which subject enrollment is stratified on treatment choice. Choice-based sampling has been considered mainly in the econometrics literature, but it can be useful for biomedical studies as well, especially when one of the treatments being compared is uncommon. We propose new methods for estimating the population average treatment effect under choice-based sampling, including doubly robust methods motivated by semiparametric theory. A doubly robust, locally efficient estimator may be obtained by replacing nuisance functions in the efficient influence function with estimates based on parametric models. The use of machine learning methods to estimate nuisance functions leads to estimators that are consistent and asymptotically efficient under broader conditions. The methods are compared in simulation experiments and illustrated in the context of a large observational study in obstetrics. We also make suggestions on how to choose the target proportion of treated subjects and the sample size in designing a choice-based observational study.
Asunto(s)
Interpretación Estadística de Datos , Aprendizaje Automático , Estudios Observacionales como Asunto/métodos , Simulación por Computador , Humanos , Funciones de Verosimilitud , Modelos Estadísticos , Tamaño de la MuestraRESUMEN
Glucocorticoids remain the most widely used immunosuppressive and anti-inflammatory drugs, yet substantial gaps exist in our understanding of glucocorticoid-mediated immunoregulation. To address this, we generated a pathway-level map of the transcriptional effects of glucocorticoids on nine primary human cell types. This analysis revealed that the response to glucocorticoids is highly cell type dependent, in terms of the individual genes and pathways affected, as well as the magnitude and direction of transcriptional regulation. Based on these data and given their importance in autoimmunity, we conducted functional studies with B cells. We found that glucocorticoids impair upstream B cell receptor and Toll-like receptor 7 signaling, reduce transcriptional output from the three immunoglobulin loci, and promote significant up-regulation of the genes encoding the immunomodulatory cytokine IL-10 and the terminal-differentiation factor BLIMP-1. These findings provide new mechanistic understanding of glucocorticoid action and emphasize the multifactorial, cell-specific effects of these drugs, with potential implications for designing more selective immunoregulatory therapies.