RESUMEN
Characterizing waste ecotoxicity is laborious because of both the undefined nature of environmental samples and the diversity of contaminants that can be present. With regard to these limitations, traditional approaches do not provide information about the nature of the pollution encountered. To improve such assessments, a fluorescent library of 1870 transcriptomic reporters from Escherichia coli K12 MG1655 was used to report the ecotoxic status of environmental samples. The reliability of the approach was evaluated with 6 metallic pollutants (As, Cu, Cd, Hg, Pb, Zn) used alone and in mixture in pure and complex matrices. A total of 18 synthetic samples were used to characterize the specificity of the resulting metallic contamination fingerprints. Metallic contamination impacted 4.5 to 10.2% of the whole transcriptomic fingerprint of E. coli. The analysis revealed that a subset of 175 transcriptomic reporters is sufficient to characterize metallic contamination, regardless of the nature of the sample. A statistical model distinguished patterns due to metallic contamination and provided information about the level of toxicity with 93 to 98% confidence. The use of the transcriptomic assessment was validated for 17 complex matrices with various toxicities and metal contaminants, such as activated sludge, wastewater effluent, soil, wood and river water. The presence of metals and their associated toxicity, which seems linked to their bioavailabilities, were thereby determined. This method constitutes a possible tool to screen unknown complex samples for their metallic status and identify those for which a deeper characterization must be achieved by the use of traditional biosensors and analytical methods.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Escherichia coli/genética , Metales Pesados/análisis , Reproducibilidad de los Resultados , Medición de Riesgo , Contaminantes del Suelo/análisis , Transcriptoma , Aguas ResidualesRESUMEN
Most former industrial sites are contaminated by mixtures of trace elements and organic pollutants. Levels of pollutants do not provide information regarding their biological impact, bioavailability and possible interactions between substances. There is genuine interest in combining chemical analyses with biological investigations. We studied a brownfield where several industrial activities were carried out starting in the 1970s, (incineration of pyralene transformers, recovery of copper by burning cables in the open air). Four representative plots showing different levels of polychlorobiphenyls were selected. Organic and trace metal levels were measured together with soil pedological characteristics. The bacterial community structure and functional diversity were assessed by 16S metagenomics with deep sequencing and community-level physiological profiling. Additionally, a vegetation survey was performed. Polychlorobiphenyls (8 mg.kg-1 to 1500 mg.kg-1) were from 2.4 × 103-fold to 6 × 105-fold higher than the European background level of 2.5 µg.kg-1. Polychlorinated dibenzo-p-dioxins and dibenzofurans ranged from 0.5 to 8.0 µg.kg-1. The soil was also contaminated with trace metals, i.e., Cu > 187, Zn > 217 and Pb > 372 mg.kg-1. Location within the study area, trace metal content and soil humidity were stronger determinants than organic pollutants of bacterial community structures and activities. Thus, the highest biological activity and the greatest bacteriological richness were observed in the plot that was less contaminated with trace metals, despite the high level of organic pollutants in the plot. Moreover, trace element pollution was associated with a relatively low presence of Actinobacteria and Rhizobia. The plot with the highest metal contamination was rich in metal-resistant bacteria such as Sphingomonadales, Geodermatophilaceae and KD4-96 (Chloroflexi phylum). Acidobacteria and Sphingomonadales, capable of resisting trace metals and degrading persistent organic pollutants, were dominant in the plots that had accumulated metal and organic contamination, but bacterial activity was lower in these plots than in the other plots.
Asunto(s)
Dioxinas , Furanos , Bifenilos Policlorados , Contaminantes del Suelo , Bacterias , Dibenzofuranos Policlorados , Dioxinas/análisis , Metales , Bifenilos Policlorados/análisis , Suelo , Contaminantes del Suelo/análisisRESUMEN
We report the sequence of the Streptococcus pyogenes emm28 strain M28PF1, isolated from a patient with postpartum endometritis. The M28 protein is smaller than that of MGAS6180 (NC_007296.1). Furthermore, the 1,896,976-bp-long chromosome presents, compared to that of MGAS6180, an inversion between the two comX genes.
RESUMEN
In this study, we quantitatively evaluated the spread of resistance to ß-lactams and of integrons in small rodents and marsupials living at various distances from a point of antibiotic's use. Rectal swabs from 114 animals were collected in Trois-Sauts, an isolated village in French Guiana, and along a 3 km transect heading through the non-anthropized primary forest. Prevalence of ticarcillin-resistant enterobacteria was 36% (41/114). Klebsiella spp., naturally resistant to ticarcillin, were found in 31.1% (23/73) of animals from the village and in an equal ratio of 31.7% (13/41) of animals trapped along the transect. By contrast Escherichia coli with acquired resistance to ticarcillin were found in 13.7% (10/73) of animals from the village and in only 2.4% (1/41) of those from the transect (600 m from the village). There was a huge diversity of E. coli and Klebsiella pneumoniae strains with very unique and infrequent sequence types. The overall prevalence of class 1 integrons carriage was 19.3% (22/114) homogenously distributed between animals from the village and the transect, which suggests a co-selection by a non-antibiotic environmental factor. Our results indicate that the anthropogenic acquired antibiotic resistance did not disseminate in the wild far from the point of selective pressure.
Asunto(s)
Animales Salvajes/microbiología , Escherichia coli/efectos de los fármacos , Transferencia de Gen Horizontal , Klebsiella pneumoniae/efectos de los fármacos , Resistencia betalactámica , Animales , Antibacterianos/farmacología , Escherichia coli/aislamiento & purificación , Bosques , Guyana Francesa , Klebsiella pneumoniae/aislamiento & purificación , Marsupiales/microbiología , Roedores/microbiología , Selección Genética , Ticarcilina/farmacologíaRESUMEN
The s-triazine herbicides are compounds which can disseminate into soils and water. Due to their toxic effects on living organisms, their concentrations in drinking water are legislated by WHO recommendations. Here we have developed for the first time, to the best of our knowledge, an alternative method for physicochemical quantification using two bioluminescent bacterial biosensors: E. coli SM003 for cyanuric acid detection and E. coli SM004 for both atrazine and cyanuric acid detection. The concentration of cyanuric acid detection for E. coli SM003 ranges from 7.83 µM to 2.89 mM, and for E. coli SM004 ranges from 0.22 to 15 µM. Moreover, atrazine detection by E. coli SM004 ranges from 1.08 to 15 µM. According to WHO recommendations, the cyanuric acid detection range is sensitive enough to discriminate between polluted and drinking water. Nevertheless, the detection of atrazine by E. coli SM004 is only applicable for high concentrations of contaminants.