RESUMEN
Crimean-Congo hemorrhagic fever (CCHF) is the most widely distributed tick-borne viral infection in the world. Strikingly, reported mortality rates for CCHF are extremely variable, ranging from 5% to 80% (Whitehouse, 2004). CCHF virus (CCHFV, Nairoviridae) exhibits extensive genomic sequence diversity across strains (Deyde et al., 2006; Sherifi et al., 2014). It is currently unknown if genomic diversity is a factor contributing to variation in its pathogenicity. We obtained complete genome sequences of CCHFV directly from the tick reservoir. These new strains belong to a solitary lineage named Europe 2 that is circumstantially reputed to be less pathogenic than the epidemic strains from Europe 1 lineage. We identified a single tick-specific amino acid variant in the viral glycoprotein region that dramatically reduces its fusion activity in human cells, providing evidence that a glycoprotein precursor variant, present in ticks, has severely impaired function in human cells.
Crimean-Congo hemorrhagic fever (CCHF) is caused by infection with a virus spread by ticks in Europe, Africa and Asia. It can cause severe disease in humans, including high fevers and bleeding. How deadly CCHF is varies with between 5% to 80% of those infected dying. Scientists suspect genetic differences in various strains of the virus may account for the differences in death rates, but they do not know the exact mutations that make the CCHF virus more or less deadly. To learn more, scientists have sorted strains of CCHF virus into different groups based on how similar they are genetically. One group called Europe 2 infects many people in the Balkans, but it rarely causes illness. In fact, only two mild cases of illness have been associated with Europe 2 strains, while other CCHF virus strains circulating in this region have caused thousands of more severe illnesses. Now, Hua et al. identified a mutation in one Europe 2 strain of the CCHF virus that may explain why this subgroup of viruses rarely causes severe human disease. The researchers collected a strain of CCHF virus from infected ticks found in Bulgaria and sequenced its genome. They named the virus strain Malko Tarnovo. Through a series of experiments, Hua et al. showed that the Malko Tarnovo strain very efficiently infects tick cells but not human cells. A single amino acid change in the genetic sequence of the virus appears to make the virus less able to infect human cells. The mutation prevents a protein on the surface of the virus from fusing with human cells, an essential step in infection. This may explain why this strain and others in the Europe 2 group do not cause severe human disease. Hua et al. also demonstrate the importance of studying viruses in the animals that spread them. By studying the CCHF virus in ticks, scientists may be able to learn more about how viruses evolve to infect new species, which may help scientists prevent future pandemics.
Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/patogenicidad , Sustitución de Aminoácidos/genética , Animales , Vectores Arácnidos/virología , Europa (Continente) , Variación Genética/genética , Genoma Viral/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/virología , Humanos , Filogenia , Garrapatas/virologíaRESUMEN
Crimean-Congo hemorrhagic fever virus (CCHFV) infection can result in a severe hemorrhagic syndrome for which there are no antiviral interventions available to date. Certain RNA viruses, such as CCHFV, encode cysteine proteases of the ovarian tumor (OTU) family that antagonize interferon (IFN) production by deconjugating ubiquitin (Ub). The OTU of CCHFV, a negative-strand RNA virus, is dispensable for replication of the viral genome, despite being part of the large viral RNA polymerase. Here, we show that mutations that prevent binding of the OTU to cellular ubiquitin are required for the generation of recombinant CCHFV containing a mutated catalytic cysteine. Similarly, the high-affinity binding of a synthetic ubiquitin variant (UbV-CC4) to CCHFV OTU strongly inhibits viral growth. UbV-CC4 inhibits CCHFV infection even in the absence of intact IFN signaling, suggesting that its antiviral activity is not due to blocking the OTU's immunosuppressive function. Instead, the prolonged occupancy of the OTU with UbV-CC4 directly targets viral replication by interfering with CCHFV RNA synthesis. Together, our data provide mechanistic details supporting the development of antivirals targeting viral OTUs.IMPORTANCE Crimean-Congo hemorrhagic fever virus is an important human pathogen with a wide global distribution for which no therapeutic interventions are available. CCHFV encodes a cysteine protease belonging to the ovarian tumor (OTU) family which is involved in host immune suppression. Here we demonstrate that artificially prolonged binding of the OTU to a substrate inhibits virus infection. This provides novel insights into CCHFV OTU function during the viral replicative cycle and highlights the OTU as a potential antiviral target.
Asunto(s)
Proteasas de Cisteína/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/enzimología , Ubiquitina/farmacología , Replicación Viral , Animales , Línea Celular Tumoral , Proteasas de Cisteína/genética , Citocinas/genética , Citocinas/metabolismo , Enzimas Desubicuitinizantes/genética , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/fisiología , Humanos , Ratones , Mutación , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMEN
BACKGROUND: Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role. RESULTS: We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression. By localizing the Origin Recognition Complex (ORC) in the genome of the larval fat body and comparing this to ORC binding in the salivary gland, we found that sites of ORC binding show extensive tissue specificity. In contrast, there are common domains nearly devoid of ORC in the salivary gland and fat body that also have reduced density of ORC binding sites in diploid cells. Strikingly, domains lacking ORC can still be replicated in some polytene tissues, showing absence of ORC and origins is insufficient to repress replication. Analysis of the width and location of the URs with respect to ORC position indicates that whether or not a genomic region lacking ORC is replicated is controlled by whether replication forks formed outside the region are inhibited. CONCLUSIONS: These studies demonstrate that inhibition of replication fork progression can block replication across genomic regions that constitutively lack ORC. Replication fork progression can be inhibited in both tissue-specific and genome region-specific ways. Consequently, when evaluating sources of genome instability it is important to consider altered control of replication forks in response to differentiation.
Asunto(s)
Diferenciación Celular/genética , Estructuras Cromosómicas , Replicación del ADN/genética , Organogénesis/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica/fisiología , Animales , Sitios de Unión , Estructuras Cromosómicas/química , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Larva , Especificidad de Órganos/genéticaRESUMEN
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Asunto(s)
Drosophila melanogaster/genética , Fase S , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrolloRESUMEN
The mechanisms that underlie metazoan DNA replication initiation, especially the connection between transcription and replication origin activation, are not well understood. To probe the role of transcription in origin activation, we exploited a specific replication origin in Drosophila melanogaster follicle cells, ori62, which coincides with the yellow-g2 transcription unit and exhibits transcription-dependent origin firing. Within a 10-kb genomic fragment that contains ori62 and is sufficient for amplification, RNA-sequencing analysis revealed that all detected RNAs mapped solely to the yellow-g2 gene. To determine whether transcription is required in cis for ori62 firing, we generated a set of tagged yellow-g2 transgenes in which we could prevent local transcription across ori62 by deletions in the yellow-g2 promoter. Surprisingly, inhibition of yellow-g2 transcription by promoter deletions did not affect ori62 firing. Our results reveal that transcription in cis is not required for ori62 firing, raising the possibility that a trans-acting factor is required specifically for the activation of ori62. This finding illustrates that a diversity of mechanisms can be used in the regulation of metazoan DNA replication initiation.