Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(3): 469-482, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38448725

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNAs, yet how plants recognize this chemical modification to swiftly adjust developmental plasticity under environmental stresses remains unclear. Here we show that m6A mRNA modification and its reader protein EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) act together as a key checkpoint for negative feedback regulation of abscisic acid (ABA) signalling by sequestering the m6A-modified ABA receptor gene PYRABACTIN RESISTANCE 1-LIKE 7 (PYL7) via phase-separated ECT8 condensates in stress granules in response to ABA. This partially depletes PYL7 mRNA from its translation in the cytoplasm, thus reducing PYL7 protein levels and compromising ABA perception. The loss of ECT8 results in defective sequestration of m6A-modified PYL7 in stress granules and permits more PYL7 transcripts for translation. This causes overactivation of ABA-responsive genes and the consequent ABA-hypersensitive phenotypes, including drought tolerance. Overall, our findings reveal that m6A-mediated sequestration of PYL7 by ECT8 in stress granules negatively regulates ABA perception, thereby enabling prompt feedback regulation of ABA signalling to prevent plant cell overreaction to environmental stresses.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Retroalimentación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Percepción , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Plantas Modificadas Genéticamente/genética
2.
Plant Commun ; 5(3): 100779, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38115582

RESUMEN

The reproductive success of flowering plants relies greatly on precise timing of the floral transition, which is finely modulated by a complex network of floral regulators. As a main floral integrator, FLOWERING LOCUS T (FT) is also an essential constituent of the florigen that is transported from leaves to shoot apices to induce flowering. FT is specifically transcribed in leaf vascular tissues, where its production is suppressed by many flowering repressors, including the MYB transcription factor EARLY FLOWERING MYB PROTEIN (EFM). Here, we show that a plant CTD phosphatase, C-TERMINAL DOMAIN PHOSPHATASE-LIKE 2 (CPL2), suppresses FT expression in leaf vascular tissues by modulating the binding activity of EFM. CPL2 interacts with and dephosphorylates EFM to facilitate the binding of dephosphorylated EFM to FT chromatin, thereby inhibiting flowering. Our results suggest that CPL2-mediated dephosphorylation of the floral repressor EFM serves as a molecular switch, adding another layer of regulation to fine-tune FT transcription and ensure that flowering occurs at an appropriate time.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/fisiología , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo
3.
Sci Adv ; 8(25): eabn5488, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35731874

RESUMEN

RNA binding proteins mediate posttranscriptional RNA metabolism and play regulatory roles in many developmental processes in eukaryotes. Despite their known effects on the floral transition from vegetative to reproductive growth in plants, the underlying mechanisms remain largely obscure. Here, we show that a hitherto unknown RNA binding protein, hnRNP R-LIKE PROTEIN (HRLP), inhibits cotranscriptional splicing of a key floral repressor gene FLOWERING LOCUS C (FLC). This, in turn, facilitates R-loop formation near FLC intron I to repress its transcription, thereby promoting the floral transition in Arabidopsis thaliana. HRLP, together with the splicing factor ARGININE/SERINE-RICH 45, forms phase-separated nuclear condensates with liquid-like properties, which is essential for HRLP function in regulating FLC splicing, R-loop formation, and RNA Polymerase II recruitment. Our findings reveal that inhibition of cotranscriptional splicing of FLC by nuclear HRLP condensates constitutes the molecular basis for down-regulation of FLC transcript levels to ensure the reproductive success of Arabidopsis.

4.
J Integr Plant Biol ; 62(1): 118-131, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31785071

RESUMEN

In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.


Asunto(s)
Arabidopsis/metabolismo , Flores/fisiología , Giberelinas/metabolismo , Transducción de Señal , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo
5.
Dev Cell ; 50(1): 90-101.e3, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31178399

RESUMEN

Plants exhibit different flowering behaviors in response to variable photoperiods across a wide geographical range. Here, we identify MYC3, a bHLH transcription factor, and its cis-element form the long-sought regulatory module responsible for cis-regulatory changes at the florigen gene FLOWERING LOCUS T (FT) that mediate natural variation in photoperiodic flowering responses in Arabidopsis. MYC3 is stabilized by DELLAs in the gibberellin pathway to suppress FT through binding the ACGGAT motif and antagonizing CONSTANS (CO) activation. Changing photoperiods modulate the relative abundance of MYC3 and CO, thus determining either of them as the predominant regulator for FT expression under different day lengths. Cis-regulatory changes in the MYC3 binding site at FT are associated with natural variation in day-length requirement for flowering in Arabidopsis accessions. Our findings reveal that environmental and developmental signals converge at MYC3 suppression of FT, an elementary event underlying natural variation in photoperiodic flowering responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fotoperiodo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Flores/genética , Flores/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Biochem Biophys Res Commun ; 483(1): 209-215, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28034756

RESUMEN

Glandular trichome is specialized multicellular structures that have capability to synthesize and secrete secondary metabolites and protect plants from biotic and abiotic stresses. Our previous results revealed that the C2H2 zinc-finger transcription factors (GIS) acts upstream of GL3/EGL3-GL1-TTG1transcriptional activator complex to regulate trichome initiation through GA signal in Arabidopsis. In the present study, we are reporting that ectopic expression of AtGIS could regulate glandular trichome development through GA signaling in tobacco. X-gluc staining of various organs from transgenic plants showed that AtGIS expressed mainly in the glandular trichomes. Statistical analysis demonstrated that over expression of GIS increased significantly glandular trichome production on the leaf, stem, branch, and sepal in tobacco. After PAC treatment, reduction of glandular trichome production in transgenic plants was more severe with compared to wild type plants. Furthermore, GA treatment could induce expression of AtGIS. More importantly, our results also demonstrated that overexpressed AtGIS significantly affect the main components of trichome exudates, such as significantly increase the content of nicotine, Cembratriene-4, 6-diol. Taken together, these results suggest that ectopic expression of AtGIS regulates glandular trichome development and may play a key role in compounds secretion in tobacco.


Asunto(s)
Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Nicotiana/metabolismo , Factores de Transcripción/genética , Tricomas/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/genética , Giberelinas/farmacología , Nicotina/metabolismo , Extractos Vegetales/análisis , Extractos Vegetales/química , Hojas de la Planta/química , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Tricomas/genética , Tricomas/metabolismo , Dedos de Zinc/genética
7.
PLoS One ; 11(12): e0168367, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27977750

RESUMEN

Plants are continuously challenged by various abiotic and biotic stresses. To tide over these adversities, plants evolved intricate regulatory networks to adapt these unfavorable environments. So far, many researchers have clarified the molecular and genetic pathways involved in regulation of stress responses. However, the mechanism through which these regulatory networks operate is largely unknown. In this study, we cloned a C2H2-type zinc finger protein gene ZFP3 from Arabidopsis thaliana and investigated its function in salt and osmotic stress response. Our results showed that the expression level of ZFP3 was highly suppressed by NaCl, mannitol and sucrose. Constitutive expression of ZFP3 enhanced tolerance of plants to salt and osmotic stress while the zfp3 mutant plants displays reduced tolerance in Arabidopsis. Gain- and Loss-of-function studies of ZFP3 showed that ZFP3 significantly changes proline accumulation and chlorophyll content. Furthermore, over-expression of ZFP3 induced the expressions of stress-related gene KIN1, RD22, RD29B and AtP5CS1. These results suggest that ZFP3 is involved in salt and osmotic stress response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Osmorregulación/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...