RESUMEN
Wound healing concerns almost all bed-side related diseases. With our increasing comprehension of healing nature, the physical and chemical natures behind the wound microenvironment have been decoupled. Wound care demands timely screening and prompt diagnosis of wound complications such as infection and inflammation. Biosensor by the way of exhaustive collection, delivery, and analysis of data, becomes indispensable to arrive at an ideal healing upshot and controlling complications by capturing in-situ wound status. Electrochemical based sensors carry some potential unstable performance subjected to the electrical circuitry and power access and contamination. The colorimetric sensors are free from those concerns. We report that microsensors designed from O/W/O of capillary fluids can continuously monitor wound temperature, pH and glucose concentration. We combined three different types of microgels to encapsulate liquid crystals of cholesterol, nontoxic fuel litmus and two glucose-sensitizing enzymes. A smartphone applet was then developed to convert wound healing images to RGB of digitalizing data. The microgel dressing effectively demonstrates the local temperature change, pH and glucose levels of the wound in high resolution where a microgel is a 'pixel'. They are highly responsive, reversible and accurate. Monitoring multiple physicochemical and physiological indicators provides tremendous potential with insight into healing processing.
RESUMEN
BACKGROUND: The prevalence of sarcopenia is increasing in worldwide with accelerated aging process. The high dietary protein intakes are associated with improved muscle mass and strength especially in Asian countries. However, there are few researches on amino acid levels or mechanism exploration. We conducted a case-control study to explore the amino acid metabolic characteristics and potential mechanism of elderly women with sarcopenia using targeted amino acid metabolomics approach combined with an analysis of dietary intake. METHODS: For our case-control study, we recruited women (65-75 y) from a Shanghai community with 50 patients with sarcopenia and 50 healthy controls. The consensus updated by the Asian Working Group on Sarcopenia in 2019 was used to screening for sarcopenia and control groups. We collected fasting blood samples and evaluated dietary intake. We used the amino acid-targeted metabolomics by ultra performance liquid chromatography tandem mass spectrometry to identify metabolic differentials between the case and control groups and significantly enriched metabolic pathways. RESULTS: The case (sarcopenia) group had a lower intake of energy, protein, and high-quality protein (P < 0.05) compared to the control (healthy) group. We identified four differential amino acids: arginine (P < 0.001) and cystine (P = 0.003) were lower, and taurine (P = 0.001) were higher in the case group. CONCLUSION: Low levels of arginine in elderly women are associated with a higher risk of sarcopenia.
RESUMEN
Objective: To evaluate the value of the malignant subregion-based texture analysis in predicting Ki-67 status in breast cancer. Materials and methods: The dynamic contrast-enhanced magnetic resonance imaging data of 119 histopathologically confirmed breast cancer patients (81 patients with high Ki-67 expression status) from January 2018 to February 2023 in our hospital were retrospectively collected. According to the enhancement curve of each voxel within the tumor, three subregions were divided: washout subregion, plateau subregion, and persistent subregion. The washout subregion and the plateau subregion were merged as the malignant subregion. The texture features of the malignant subregion were extracted using Pyradiomics software for texture analysis. The differences in texture features were compared between the low and high Ki-67 expression cohorts and then the receiver operating characteristic (ROC) curve analysis to evaluate the predictive performance of texture features on Ki-67 expression. Finally, a support vector machine (SVM) classifier was constructed based on differential features to predict the expression level of Ki-67, the performance of the classifier was evaluated using ROC analysis and confirmed using 10-fold cross-validation. Results: Through comparative analysis, 51 features exhibited significant differences between the low and high Ki-67 expression cohorts. Following feature reduction, 5 features were selected to build the SVM classifier, which achieved an area under the ROC curve (AUC) of 0.77 (0.68-0.87) for predicting the Ki-67 expression status. The accuracy, sensitivity, and specificity were 0.76, 0.80, and 0.68, respectively. The average AUC from the 10-fold cross-validation was 0.72 ± 0.14. Conclusion: The texture features of the malignant subregion in breast cancer were potential biomarkers for predicting Ki-67 expression level in breast cancer, which might be used to precisely diagnose and guide the treatment of breast cancer.
RESUMEN
BACKGROUND: Biologics have revolutionized psoriasis treatment; however, relapse of psoriasis after discontinuation of biologics remains unresolved. OBJECTIVE: To assess the impact of adjunctive Chinese medicine (CM) therapy on relapse of psoriasis vulgaris (PV) after discontinuation of biologics. METHODS: We constructed a prospective cohort study through a psoriasis case registry platform that enrolled patients treated with biologics (in combination with or without CM). The endpoint event was relapse, defined as loss of psoriasis area and severity index (PASI) 75. RESULTS: A total of 391 patients completed the study and were included in the analysis, of whom 169 (43.2%) experienced relapse during follow-up. To minimize the bias, a 1:1 propensity score matching (PSM) was performed, generating matched cohorts of 156 individuals per group. Adjuvant CM therapy significantly associated with reduced incidence of relapse (HR =0.418, 95% CI = 0.289 â¼ 0.604, p < 0.001), and the protective effect of CM in the subgroup analysis was significant. In addition, PASI 90 response and disease duration were associated with relapse (p < 0.05). CONCLUSION: Adjunctive CM therapy is associated with reduced relapse incidence in PV after discontinuation of biologics.
Asunto(s)
Productos Biológicos , Psoriasis , Recurrencia , Sistema de Registros , Índice de Severidad de la Enfermedad , Humanos , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Masculino , Femenino , Estudios Prospectivos , Persona de Mediana Edad , Adulto , Productos Biológicos/uso terapéutico , Resultado del Tratamiento , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional ChinaRESUMEN
Air pollution shares the attributes of multi-factorial influence and spatiotemporal complexity, leading to air pollution control assistance models easily falling into a state of failure. To address this issue, we design a framework containing improved data fusion method, novel grey incidence models and air pollution spatiotemporal analysis to analyze the complex characteristics of air pollution under the fusion of multiple factors. Firstly, we improve the existing data fusion method for multi-factor fusion. Subsequently, we construct two grey spatiotemporal incidence models to examine the spatiotemporal characteristics of multi-factorial air pollution in network relationships and changing trends. Furthermore, we propose two new properties that can manifest the performance of grey incidence analysis, and we provide detailed proof of the properties of the new models. Finally, in the Jing-Jin-Ji region, the novel models are used to study the network relationships and trend changes of air pollution. The findings are as follows: (1) Two highly polluted belts in the region require attention. (2) Although the air pollution network under multi-factorial fusion obeys the first law of geography, the network density and node density exhibit significant variations. (3) From 2013 to 2021, all pollutants except O3 show improvement. (4) Recommendations for responses are presented based on the above-mentioned results. (5) The parameter analyses, model comparisons, Monte Carlo experiments and model feature summaries illustrate that the proposed models are practical, interpretable and considerably outperform various prevailing competitors with remarkable universality.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Análisis Espacio-Temporal , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Teóricos , ChinaRESUMEN
The environmental hazards resulting from the excessive application of pesticides and fertilizers have been an inevitable agricultural production issue in various countries around the world. New technologies and policies are constantly trying to improve their application efficiency. This paper utilizes panel data of the provincial level in China from 2009 to 2019 to empirically study the effect of green finance reform policies on the chemical fertilizer application intensity (FAI) and pesticide application intensity (PAI). Standard difference-in-differences (DID), synthetic DID, difference-in-difference-in differences (DDD), and spatial DID models are constructed for specific empirical analysis. The findings can be concluded as follows: (1) A unit of the green finance reform policy reduces FAI by 0.0144 and PAI by 1.7921 by promoting green technology innovation. (2) Government financial extractive capacity hinders the reduction effect of green finance on PAI. (3) Coastal geographical location is conducive to reducing PAI through green finance reform. (4) FAI and PAI show positive spatial autocorrelations, and the influence of green finance reform overflows to surrounding areas. The research results can provide policy references for countries around the world to promote the green development of agriculture and reduce environmental pollution.
RESUMEN
BACKGROUND AND AIMS: Hyperuricemia frequently accompanies dyslipidemia, yet the precise mechanism remains elusive. Leveraging cellular metabolomics analyses, this research probes the potential mechanisms wherein hyperuricemia provokes endothelial cell abnormalities, inducing disordered bile metabolism and resultant lipid anomalies. METHODS AND RESULTS: We aimed to identify the differential metabolite associated with lipid metabolism through adopting metabolomics approach, and thereafter adequately validating its protective function on HUVECs by using diverse assays to measure cellular viability, reactive oxygen species, migration potential, apoptosis and gene and protein levels of inflammatory factors. Taurochenodeoxycholic acid (TCDCA) (the differential metabolite of HUVECs) and the TCDCA-involved primary bile acid synthesis pathway were found to be negatively correlated with high UA levels based on the results of metabolomics analysis. It was noted that compared to the outcomes observed in UA-treated HUVECs, TCDCA could protect against UA-induced cellular damage and oxidative stress, increase proliferation as well as migration, and decreases apoptosis. In addition, it was observed that TCDCA might protect HUVECs by inhibiting UA-induced p38 mitogen-activated protein kinase/nuclear factor kappa-B p65 (p38MAPK/NF-κB p65) pathway gene and protein levels, as well as the levels of downstream inflammatory factors. CONCLUSION: The pathogenesis of hyperuricemia accompanying dyslipidemia may involve high uric acid levels eliciting inflammatory reactions and cellular damage in human umbilical vein endothelial cells (HUVECs), mediated through the p38MAPK/NF-κB signaling pathway, subsequently impinging on cellular bile acid synthesis and reducing bile acid production.
Asunto(s)
Apoptosis , Movimiento Celular , Dislipidemias , Células Endoteliales de la Vena Umbilical Humana , Hiperuricemia , Metabolómica , Estrés Oxidativo , Transducción de Señal , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hiperuricemia/sangre , Hiperuricemia/metabolismo , Dislipidemias/sangre , Apoptosis/efectos de los fármacos , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ácido Úrico/sangre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción ReIA/metabolismo , Mediadores de Inflamación/metabolismo , Ácidos y Sales Biliares/metabolismo , Proliferación Celular/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacosRESUMEN
Nature makes the most beautiful solution to involuted problems. Among them, the parallel tubular structures are capable of transporting fluid quickly in plant trunks and leaf stems, which demonstrate an ingenious evolutionary design. This study develops a mini-thermoelectric semiconductor P-N module to create gradient and parallel channeled hydrogels. The modules decrease quickly the temperature of polymer solution from 20 °C to -20 °C within 5 min. In addition to the exceptional liquid absorption rate, the foams exhibited shape memory mechanics. Our mini device universally makes the inspired structure in such as chitosan, gelatin, alginate and polyvinyl alcohol. Non-compressible hemorrhages are the primary cause of death in emergency. The rapid liquid absorption leads to fast activation of coagulation, which provides an efficient strategy for hemostasis management. We demonstrated this by using our semiconductor modules on collagen-kaolin parallel channel foams with their high porosity (96.43%) and rapid expansion rate (2934%). They absorb liquid with 37.25 times of the own weight, show 46.5-fold liquid absorption speed and 24-fold of blood compared with random porous foams. These superior properties lead to strong hemostatic performance in vitro and in vivo.
RESUMEN
Bioactive materials based on a nature-derived extracellular matrix (NECM) represent a category of biomedical devices with versatile therapeutic applications in the realms of tissue repair and engineering. With advancements in decellularization technique, the inherent bioactive molecules and the innate nano-structural and mechanical properties are preserved in three-dimensional scaffolds mainly composed of collagens. Techniques such as electrospinning, three-dimensional printing, and the intricate fabrication of hydrogels are developed to mimic the physical structures, biosignalling and mechanical cues of ECM. Until now, there has been no approach that can fully account for the multifaceted properties and diverse applications of NECM. In this review, we introduce the main proteins composing NECMs and explicate the importance of them when used as therapeutic devices in tissue repair. Nano-structural features of NECM and their applications regarding tissue repair are summarized. The origins, degradability, and mechanical property of and immune responses to NECM are also introduced. Furthermore, we review their applications, and clinical features thereof, in the repair of acute and chronic wounds, abdominal hernia, breast deformity, etc. Some typical marketed devices based on NECM, their indications, and clinical relevance are summarized.
RESUMEN
The environmental effects of the urban agglomeration planning policy (UAPP) are an exploration by rapidly developing China and a concern for countries seeking development and urban reform around the world. This paper takes the three regional urban agglomerations in the Yellow River Basin (YRB) as the research object and collects the panel data of 106 prefecture-level cities from 2006 to 2019 to study the reduction effects of UAPP on the industrial wastewater discharge (IWD). The empirical results from Difference-in-Differences models indicate that UAPP can significantly inhibit IWD. UAPP reduces IWD by promoting green innovation, and the development of service industries can strengthen this effect. UAPP shows a stronger IWD reduction effect in the northeast YRB than that in the southwest region. Compared to urban agglomerations with a single provincial jurisdiction, UAPP exerts stronger IWD reduction effects on urban agglomerations with multiple jurisdictions. Moreover, there exist spatial spillover effects of UAPP on IWD. These findings provide support and references for urban reform and the development of green cities in countries around the world, especially in developing countries.
Asunto(s)
Ríos , Aguas Residuales , China , Ciudades , Políticas , Desarrollo EconómicoRESUMEN
Reducing production costs is one of the main objectives of process intensification; in this work, production costs of the distillation process are reduced by reducing equipment size and utility consumption from the perspective of process optimization to achieve the purpose of process intensification. The application of intelligent optimization algorithms in the optimization process of distillation is vital to achieving high efficiency and low costs. Combining the harmony search algorithm with the characteristics of distillation optimization, a new distillation harmony search algorithm (DHSA) was proposed, which includes the self-adaptive adjustment of parameters, roulette selection strategy, and ratio optimization strategy. Benefiting from the DHSA, the optimal total annual cost and calculation times were remarkably reduced when compared with reported algorithms in the optimization of four distillation cases including the two-column model, three-column model, reactive distillation column model, and dividing-wall extractive distillation column model. In addition, the highest coefficient of variation of DHSA in 10 parallel calculations is 1.25%. These results indicate that DHSA has the advantages of a higher-quality solution, less computing time, and higher stability, which not only improves the optimization efficiency and quality but also inspires the optimization strategies for other algorithms.
RESUMEN
Fe-based metal-organic frameworks (MOFs) show high activity toward the activation of peroxodisulfate (PDS) for the removal of organic micropollutants (OMPs) in wastewater treatment. However, there is a phenomenon of Fe ion dissolution in the Fe-based MOFs' active PDS system, and the reasons and influencing factors that cause Fe ion dissolution are poorly understood. In this study, we synthesized four types of Fe-based MOFs and confirmed their crystal structure through characterization. All types of Fe-based MOFs were found to activate PDS and form sulfate radicals (SO4 -), which effectively remove OMPs in wastewater. During the process of Fe-based MOFs activating PDS for CIP removal, activated species, oxidant reagent, and pH negatively impact the stability performance of the MOFs' structure. The coordination bond between Fe atom and O atom can be attacked by water molecules, free radicals, and H+, causing damage to the crystal structure of MOFs. Additionally, Fe (II)-MOFs exhibit the best stability performance, due to the enhanced bond energy of the coordination bond in MOFs by the F ligands. This study summarizes the influencing factors of Fe-based MOFs' damage during PDS activation processes, providing new insights for the future development of Fe-based MOFs.
RESUMEN
Current hemostatic agents or dressings are not efficient under extremely hot and cold environments due to deterioration of active ingredients, water evaporation and ice crystal growth. To address these challenges, we engineered a biocompatible hemostatic system with thermoregulatory properties for harsh conditions by combining the asymmetric wetting nano-silica aerogel coated-gauze (AWNSA@G) with a layer-by-layer (LBL) structure. Our AWNSA@G was a dressing with a tunable wettability prepared by spraying the hydrophobic nano-silica aerogel onto the gauze from different distances. The hemostatic time and blood loss of the AWNSA@G were 5.1 and 6.9 times lower than normal gauze in rat's injured femoral artery model. Moreover, the modified gauze was torn off after hemostasis without rebleeding, approximately 23.8 times of peak peeling force lower than normal gauze. For the LBL structure, consisting of the nano-silica aerogel layer and a n-octadecane phase change material layer, in both hot (70 °C) and cold (-27 °C) environments, exhibited dual-functional thermal management and maintained a stable internal temperature. We further verified our composite presented superior blood coagulation effect in extreme environments due to the LBL structure, the pro-coagulant properties of nano-silica aerogel and unidirectional fluid pumping of AWNSA@G. Our work, therefore, shows great hemostasis potential under normal and extreme temperature environments.
RESUMEN
With the superior ductility and flexibility brought by compliant bodies, soft manipulators provide a nondestructive manner to grasp delicate objects, which has been developing gradually as a rising focus of soft robots. However, the unexpected phenomenon caused by environmental effects, leading to high internal nonlinearity and unpredictable deformation, makes it challenging to design, model, and control soft manipulators. In this paper, we designed a soft pneumatically actuated manipulator consisting of four soft actuators, as well as a flange, and investigated the influence of structural parameters on the output characteristics of the manipulator through finite element analysis (FEA). To enhance the bending deformation of the soft actuator, annular rings were employed on the soft actuator. A mathematical model for the bending deformation of air cavities was established to explore the relationship between the driving pressure and the bending angle based on the Yeoh strain energy function. Moreover, an end-output force model was established to depict the variation of the force output with the bending angle of the soft actuator, which was then experimentally validated by adopting the manufactured manipulator. The soft actuator studied in this paper can bend from 0° to 110° under an applied pressure of 0-60 kPa, and the maximum grasping load of the soft manipulator is 5.8 N. Finally, practical tests were conducted to assess the adaptability of the soft manipulator when grasping delicate fruits, such as apples, pears, tomatoes, and mangoes, demonstrating its broad application prospects in nondestructive fruit harvesting.
Asunto(s)
Frutas , Robótica , Diseño de Equipo , Fuerza de la Mano , Modelos TeóricosRESUMEN
Objective: This study aims to evaluate the efficacy of various conventional synthetic DMARDs, including Tripterygium wilfordii Hook F (TwHF) for treating rheumatoid arthritis (RA) by network meta-analysis. Methods: We retrieved the related literature from online databases and supplemented it by using a manual retrieval method. Data was extracted from the literature and analyzed with STATA software. Results: A total of 21 trials (5,039 participants) were identified. Assessment of ACR20 response found that TwHF combined with methotrexate (MTX) had the greatest probability for being the best treatment option among the treatments involved, while TwHF used singly was second only to TwHF combined with MTX. Assessment of ACR50 response found that TwHF combined with MTX ranked second in all treatment options after cyclosporine A (CsA) combined with leflunomide (LEF) and TwHF alone, followed by TwHF combined with MTX. Assessment of ACR70 response found that CsA combined with LEF ranked first, TwHF combined with LEF ranked second, TwHF combined with MTX ranked third, and TwHF used singly ranked fourth. In the safety analysis, TwHF had the least probability of adverse event occurrence, followed by TwHF combined with MTX, which ranked first and second, respectively. Conclusion: Compared with the current csDMARDs for treating RA, the efficacy of TwHF was clear, and TwHF combined with MTX performed well under various endpoints. In the future, large, rigorous, and high-quality RCTs are still needed to confirm the benefits of TwHF therapy on RA.
RESUMEN
Trichlorosilane (TCS) is a crucial intermediate product in the polysilicon manufacturing process, and its purification consumes a significant amount of energy. The design and control of the TCS heat integration pressure-swing distillation (HIPSD) process was investigated using Aspen Plus V8.4 and Aspen dynamics in this study. Three partial processes and one full HIPSD process were investigated by adjusting the operating conditions and rationally configuring the material flow. Compared with the conventional distillation process, the partial and full HIPSD can reduce total annual cost by 15.75 and 27.39%, respectively. The aforementioned process was controlled robustly by adding the ratio of reboiler heat duty to feed (Q R/F) feedforward control structure and the ratio of recycle to feed (F REC/F) control structure. In addition, the performance of the control structure was evaluated by introducing ±10% disturbances of the feed flowrate and composition. To compare the performance of the control structure, the integral squared error value is combined with the dynamic response curve. The full HIPSD scheme can resist ±10% disturbances of flow and composition with the best economic performance. This study has certain reference significance for the distillation process and control strategy design of TCS in the polysilicon manufacturing process.
RESUMEN
Advanced oxidation is a very efficient method in wastewater treatment, but it is a waste of resources to directly oxide the high concentration of valuable organics into carbon dioxide and water. In this paper, the combination of persulfate and wet air oxidation was developed to recover organics from high concentration of wastewater, along with high mineralization of the residual organics. Nitrogen and sulfur co-doped hollow spherical polymers with narrow size distribution was recovered from the simulated benzothialzole (BTH) wastewater in this facile way, along with chemical oxygen demand (COD) removal rate higher than 90%. The formation route of the polymers was intensively studied based on detailed analysis of different kinds of reaction intermediates. The polymers can be further carbonized into co-doped hollow carbon microsphere, which showed better performance in organic contaminants removal than a commercial activated carbon both in adsorption or catalytic persulfate oxidation. This proposed a new strategy to simultaneously combine oxidation and polymerization for resource recovery from wastewater with high concentration of heterocyclic compounds.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Benzotiazoles , Microesferas , Nitrógeno , Oxidación-Reducción , Polímeros , Azufre , Eliminación de Residuos Líquidos , Aguas ResidualesRESUMEN
Xihuang pill, an approved Chinese medicine formula (state medical permit number. Z11020073), is a commonly used adjuvant drug for cancer patients in China. Xihuang pill has a satisfactory effect in treating breast cancer in clinics, especially triple-negative breast cancer (TNBC), which is the most aggressive type of breast cancer, and finite effective therapies. However, the mechanism of Xihuang pill in treating TNBC remains unclear. The present study aims to explore the pharmacological mechanism of Xihuang pill in treating advanced TNBC. We identified the main chemical components of Xihuang pill by using HPLC-Q-TOF-MS/MS. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis shows that serum containing Xihuang pill (XS) had no obvious killing effect on any subtype of breast cancer cells, but it inhibited mammosphere colony formation of two TNBC cell lines (4T1 and HCC1806 cells) and could enhance the inhibitory effect of paclitaxel (PTX) on the proliferation of 4T1 and HCC1806 cells when combined with PTX. Seventy-six active compounds in Xihuang pill, their 300 protein targets, and 16667 TNBC stem cell-related genes were identified. The drug-herb-active compound-target gene-disease network and enrichment analyses were constructed with 190 overlapping candidate targets. Through text mining and molecular docking, the target gene NR3C2 and its active compound naringenin were selected for further validation. According to the TCGA database, we observed that a high expression of NR3C2 promoted a higher survival probability regarding overall survival (OS). In vitro experiments indicated that naringenin presented an identical effect to XS, possibly by regulating the NR3C2 expression. Overall, this study explored the effect of Xihuang pill in treating advanced TNBC cells and showed that naringenin, which is the key active compound of Xihuang pill, could lessen the stemness of TNBC cells to produce a synergistic effect on PTX by regulating the NR3C2 gene.
RESUMEN
Solanum betacea is a sub-tropical tree, and the fruit has high nutritional value, unique flavor and color. It is used as a functional ingredient in health care, food, cosmetic and pharmaceutical applications. The complete chloroplast(Cp) genome of S. betacea has been assembled and annotated in this paper. Its length was 155,937 bp, containing a large single-copy region of 86,731 bp, a small single-copy region of 18,450 bp, and a pair of IR regions of 25,378 bp in each. The complete chloroplast genome of S. betacea contained 134 genes, including 90 protein-coding genes, 36 transfer RNA genes (tRNAs), and 8 ribosome RNA genes (rRNAs). The overall GC content was 37.7% and the GC contents of the LSC, SSC, and IR regions were 35.7%, 31.8%, and 43.1%, respectively. Phylogenetic analysis with the reported chloroplast genomes revealed that S. betacea has been most closely related to Solanum torvum. These findings will provide useful information for further investigation of chloroplast genome evolution in Solanum betacea.
RESUMEN
Crateva unilocularis is naturally distributed in Southern China, which is an elite natural tree with high edible and medicinal value. In this study, whole chloroplast (cp) genome of Crateva unilocularis was assembled and characterized on the basis of Illumina pair-end sequencing data. The complete cp genome was 156,417 bp in length, containing a large single-copy region (LSC) of 85,607 bp and a small single-copy region (SSC) of 18,164 bp, which were separated by a pair of 26,323 bp inverted repeat regions (IRs). The genome contained 128 genes, including 85 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. The overall GC content is 36.32%, while the corresponding values of the LSC, SSC, and IR regions were 33.98, 29.45, and 42.48%, respectively. The maximum-likelihood phylogenetic analysis showed a strong sister relationship with Crateva tapia. These findings provide a foundation for further investigation of cp genome evolution in Crateva unilocularis and other higher plants.