Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 26(3): 404-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424271

RESUMEN

γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Citoesqueleto/metabolismo
2.
J Mol Cell Biol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389254

RESUMEN

Although the dynamic instability of microtubules (MTs) is fundamental to many cellular functions, quiescent MTs with unattached free distal ends are commonly present and play important roles in various events to power cellular dynamics. However, how these free MT tips are stabilized remains poorly understood. Here, we report that centrosome and spindle pole protein 1 (CSPP1) caps and stabilizes both plus and minus ends of static MTs. Real-time imaging of laser-ablated MTs in live cells showed deposition of CSPP1 at the newly generated MT ends, whose dynamic instability was concomitantly suppressed. Consistently, MT ends in CSPP1-overexpressing cells were hyper-stabilized, while those in CSPP1-depleted cells were much more dynamic. This CSPP1-elicited stabilization of MTs was demonstrated to be achieved by suppressing intrinsic MT catastrophe and restricting the polymerization. Importantly, CSPP1-bound MTs were resistant to MCAK-mediated depolymerization. These findings delineate a previously uncharacterized CSPP1 activity that integrates MT end capping to orchestrate quiescent MTs.

3.
EMBO J ; 42(11): e112953, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37014312

RESUMEN

Microtubule (MT) minus ends are stabilized by CAMSAP family proteins at noncentrosomal MT-organizing centers. Despite progress in identifying diverse positive regulators, knowledge on the negative regulation of the MT minus-end distribution is lacking. Here, we identify CEP170B as a MT minus-end-binding protein that colocalizes with the microtubule-stabilizing complex at the cortical patches. CEP170B depends on the scaffold protein liprin-α1 for its cortical targeting and requires liprin-α1-bound PP2A phosphatase for its MT localization. CEP170B excludes CAMSAPs-stabilized MT minus ends from the cell periphery in HeLa cells and the basal cortex in human epithelial cells and is required for directional vesicle trafficking and cyst formation in 3D culture. Reconstitution experiments demonstrate that CEP170B autonomously tracks growing MT minus ends and blocks minus-end growth. Furthermore, CEP170B in a complex with the kinesin KIF2A acts as a potent MT minus-end depolymerase capable of antagonizing the stabilizing effect of CAMSAPs. Our study uncovers an antagonistic mechanism for controlling the spatial distribution of MT minus ends, which contributes to the establishment of polarized MT network and cell polarity.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células HeLa , Microtúbulos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
4.
J Cell Biol ; 221(7)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35604367

RESUMEN

Branching microtubule (MT) nucleation is mediated by the augmin complex and γ-tubulin ring complex (γ-TuRC). However, how these two complexes work together to promote this process remains elusive. Here, using purified components from native and recombinant sources, we demonstrate that human augmin and γ-TuRC are sufficient to reconstitute the minimal MT branching machinery, in which NEDD1 bridges between augmin holo complex and GCP3/MZT1 subcomplex of γ-TuRC. The single-molecule experiment suggests that oligomerization of augmin may activate the branching machinery. We provide direct biochemical evidence that CDK1- and PLK1-dependent phosphorylation are crucial for NEDD1 binding to augmin, for their synergistic MT-binding activities, and hence for branching MT nucleation. In addition, we unveil that NEDD1 possesses an unanticipated intrinsic affinity for MTs via its WD40 domain, which also plays a pivotal role in the branching process. In summary, our study provides a comprehensive understanding of the underlying mechanisms of branching MT nucleation in human cells.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Centro Organizador de los Microtúbulos , Microtúbulos , Tubulina (Proteína) , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Tubulina (Proteína)/metabolismo , Repeticiones WD40 , Quinasa Tipo Polo 1
5.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34137789

RESUMEN

WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2-Aurora A-WDR62-katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Katanina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Huso Acromático/enzimología , Aurora Quinasa A/genética , Proteínas de Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Katanina/genética , Cinética , Microcefalia/enzimología , Microcefalia/genética , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Paclitaxel/farmacología , Fosforilación , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/genética , Moduladores de Tubulina/farmacología
7.
Methods Mol Biol ; 2101: 19-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879895

RESUMEN

In vitro reconstitution has been an invaluable tool to elucidate the roles and mechanisms of microtubule-associated proteins (MAPs). Like all biochemical assays, the quality of the proteins is vital for success. In the microtubule field, proteins produced in bacteria and insect cells have been widely used for in vitro reconstitution. Recently, we applied the mammalian HEK293T cell expression system to our research on several MAPs. We find that such system is especially suitable for quick functional studies and can produce active proteins that sometimes are difficult for either bacteria or insect cell expression systems. Here, we provide a detailed protocol to express and purify microtubule-associated proteins from HEK293T cells using a Strep-tag strategy. The method described here can be adopted for preparation of other proteins and protein complexes for reconstitution studies.


Asunto(s)
Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/aislamiento & purificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Cromatografía de Afinidad , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Plásmidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transfección
8.
Structure ; 26(3): 375-382.e4, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29395789

RESUMEN

CAMSAP/Patronin family members regulate the organization and stability of microtubule minus ends in various systems ranging from mitotic spindles to differentiated epithelial cells and neurons. Mammalian CAMSAP2 and CAMSAP3 bind to growing microtubule minus ends, where they form stretches of stabilized microtubule lattice. The microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. Here, by using biochemical, biophysical, and structural approaches, we reveal that a short helical motif conserved in CAMSAP2 and CAMSAP3 binds to the heterodimer formed by the N- and C-terminal domains of katanin subunits p60 and p80, respectively. The identified CAMSAP-katanin binding mode is supported by mutational analysis and genome-editing experiments. It is strikingly similar to the one seen in the ASPM-katanin complex, which is responsible for microtubule minus-end regulation in mitotic spindles. Our work provides a general molecular mechanism for the cooperation of katanin with major microtubule minus-end regulators.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Katanina/química , Katanina/metabolismo , Animales , Sitios de Unión , Proteínas del Citoesqueleto/genética , Edición Génica , Humanos , Katanina/genética , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Dominios Proteicos
9.
Nat Struct Mol Biol ; 24(11): 931-943, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28991265

RESUMEN

CAMSAP and Patronin family members regulate microtubule minus-end stability and localization and thus organize noncentrosomal microtubule networks, which are essential for cell division, polarization and differentiation. Here, we found that the CAMSAP C-terminal CKK domain is widely present among eukaryotes and autonomously recognizes microtubule minus ends. Through a combination of structural approaches, we uncovered how mammalian CKK binds between two tubulin dimers at the interprotofilament interface on the outer microtubule surface. In vitro reconstitution assays combined with high-resolution fluorescence microscopy and cryo-electron tomography suggested that CKK preferentially associates with the transition zone between curved protofilaments and the regular microtubule lattice. We propose that minus-end-specific features of the interprotofilament interface at this site serve as the basis for CKK's minus-end preference. The steric clash between microtubule-bound CKK and kinesin motors explains how CKK protects microtubule minus ends against kinesin-13-induced depolymerization and thus controls the stability of free microtubule minus ends.


Asunto(s)
Cinesinas/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Eucariontes , Microscopía Fluorescente , Unión Proteica
11.
Nat Cell Biol ; 19(5): 480-492, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28436967

RESUMEN

ASPM (known as Asp in fly and ASPM-1 in worm) is a microcephaly-associated protein family that regulates spindle architecture, but the underlying mechanism is poorly understood. Here, we show that ASPM forms a complex with another protein linked to microcephaly, the microtubule-severing ATPase katanin. ASPM and katanin localize to spindle poles in a mutually dependent manner and regulate spindle flux. X-ray crystallography revealed that the heterodimer formed by the N- and C-terminal domains of the katanin subunits p60 and p80, respectively, binds conserved motifs in ASPM. Reconstitution experiments demonstrated that ASPM autonomously tracks growing microtubule minus ends and inhibits their growth, while katanin decorates and bends both ends of dynamic microtubules and potentiates the minus-end blocking activity of ASPM. ASPM also binds along microtubules, recruits katanin and promotes katanin-mediated severing of dynamic microtubules. We propose that the ASPM-katanin complex controls microtubule disassembly at spindle poles and that misregulation of this process can lead to microcephaly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Microcefalia/metabolismo , Microtúbulos/enzimología , Proteínas del Tejido Nervioso/metabolismo , Polos del Huso/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Humanos , Katanina , Microcefalia/genética , Microcefalia/patología , Microtúbulos/genética , Microtúbulos/patología , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Polos del Huso/genética , Polos del Huso/patología , Relación Estructura-Actividad , Factores de Tiempo , Transfección
12.
J Cell Sci ; 129(22): 4278-4288, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802168

RESUMEN

The microtubule cytoskeleton regulates cell polarity by spatially organizing membrane trafficking and signaling processes. In epithelial cells, microtubules form parallel arrays aligned along the apico-basal axis, and recent work has demonstrated that the members of CAMSAP/Patronin family control apical tethering of microtubule minus ends. Here, we show that in mammalian intestinal epithelial cells, the spectraplakin ACF7 (also known as MACF1) specifically binds to CAMSAP3 and is required for the apical localization of CAMSAP3-decorated microtubule minus ends. Loss of ACF7 but not of CAMSAP3 or its homolog CAMSAP2 affected the formation of polarized epithelial cysts in three-dimensional cultures. In short-term epithelial polarization assays, knockout of CAMSAP3, but not of CAMSAP2, caused microtubule re-organization into a more radial centrosomal array, redistribution of Rab11-positive (also known as Rab11A) endosomes from the apical cell surface to the pericentrosomal region and inhibition of actin brush border formation at the apical side of the cell. We conclude that ACF7 is an important regulator of apico-basal polarity in mammalian intestinal cells and that a radial centrosome-centered microtubule organization can act as an inhibitor of epithelial polarity.


Asunto(s)
Polaridad Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células CACO-2 , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Microvellosidades/metabolismo , Unión Proteica
13.
Dev Cell ; 39(1): 44-60, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27666745

RESUMEN

The Golgi apparatus controls the formation of non-centrosomal microtubule arrays important for Golgi organization, polarized transport, cell motility, and cell differentiation. Here, we show that CAMSAP2 stabilizes and attaches microtubule minus ends to the Golgi through a complex of AKAP450 and myomegalin. CLASPs stabilize CAMSAP2-decorated microtubules but are not required for their Golgi tethering. AKAP450 is also essential for Golgi microtubule nucleation, and myomegalin and CDK5RAP2 but not CAMSAP2 contribute to this function. In the absence of centrosomes, AKAP450- and CAMSAP2-dependent pathways of microtubule minus-end organization become dominant, and the presence of at least one of them is needed to maintain microtubule density. Strikingly, a compact Golgi can be assembled in the absence of both centrosomal and Golgi microtubules. However, CAMSAP2- and AKAP450-dependent Golgi microtubules facilitate Golgi reorientation and cell invasion in a 3D matrix. We propose that Golgi-anchored microtubules are important for polarized cell movement but not for coalescence of Golgi membranes.


Asunto(s)
Aparato de Golgi/metabolismo , Microtúbulos/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Centriolos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/efectos de los fármacos , Humanos , Imagenología Tridimensional , Membranas Intracelulares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Tubulina (Proteína)/metabolismo
14.
Curr Biol ; 26(13): 1713-1721, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27321995

RESUMEN

Microtubules are dynamic polymers built of tubulin dimers that attach in a head-to-tail fashion to form protofilaments, which further associate laterally to form a tube. Asynchronous elongation of individual protofilaments can potentially lead to an altered microtubule-end structure that promotes sudden depolymerization, termed catastrophe [1-4]. However, how the dynamics of individual protofilaments relates to overall growth persistence has remained unclear. Here, we used the microtubule targeting anti-cancer drug Eribulin [5-7] to explore the consequences of stalled protofilament elongation on microtubule growth. Using X-ray crystallography, we first revealed that Eribulin binds to a site on ß-tubulin that is required for protofilament plus-end elongation. Based on the structural information, we engineered a fluorescent Eribulin molecule. We demonstrate that single Eribulin molecules specifically interact with microtubule plus ends and are sufficient to either trigger a catastrophe or induce slow and erratic microtubule growth in the presence of EB3. Interestingly, we found that Eribulin increases the frequency of EB3 comet "splitting," transient events where a slow and erratically progressing comet is followed by a faster comet. This observation possibly reflects the "healing" of a microtubule lattice. Because EB3 comet splitting was also observed in control microtubules in the absence of any drugs, we propose that Eribulin amplifies a natural pathway toward catastrophe by promoting the arrest of protofilament elongation.


Asunto(s)
Antimitóticos/farmacología , Furanos/farmacología , Cetonas/farmacología , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Bovinos , Cristalografía por Rayos X , Microtúbulos/efectos de los fármacos
15.
J Biol Chem ; 290(45): 27053-27066, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26378239

RESUMEN

Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
Dev Cell ; 28(3): 295-309, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24486153

RESUMEN

Microtubules are cytoskeletal polymers with two structurally and functionally distinct ends, the plus- and the minus-end. Here, we focus on the mechanisms underlying the regulation of microtubule minus-ends by the CAMSAP/Nezha/Patronin protein family. We show that CAMSAP2 is required for the proper organization and stabilization of interphase microtubules and directional cell migration. By combining live-cell imaging and in vitro reconstitution of microtubule assembly from purified components with laser microsurgery, we demonstrate that CAMSAPs regulate microtubule minus-end growth and are specifically deposited on the lattice formed by microtubule minus-end polymerization. This process leads to the formation of CAMSAP-decorated microtubule stretches, which are stabilized from both ends and serve as sites of noncentrosomal microtubule outgrowth. The length of the stretches is regulated by the microtubule-severing protein katanin, which interacts with CAMSAPs. Our data thus indicate that microtubule minus-end assembly drives the stabilization of noncentrosomal microtubules and that katanin regulates this process.


Asunto(s)
Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Katanina , Ratones
17.
J Neurosci ; 32(42): 14722-8, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23077057

RESUMEN

Development, polarization, structural integrity, and plasticity of neuronal cells critically depend on the microtubule network and its dynamic properties. SLAIN1 and SLAIN2 are microtubule plus-end tracking proteins that have been recently identified as regulators of microtubule dynamics. SLAINs are targeted to microtubule tips through an interaction with the core components of microtubule plus-end tracking protein network, End Binding family members. SLAINs promote persistent microtubule growth by recruiting the microtubule polymerase ch-TOG to microtubule plus-ends. Here, we show that SLAIN1/2 and ch-TOG-proteins are highly enriched in brain and are expressed throughout mouse brain development. Disruption of the SLAIN-ch-TOG complex in cultured primary rat hippocampal neurons by RNA interference-mediated knockdown and a dominant-negative approach perturbs microtubule growth by increasing catastrophe frequency and inhibits axon extension during neuronal development. Our study shows that proper control of microtubule dynamics is important for axon elongation in developing neurons.


Asunto(s)
Axones/fisiología , Hipocampo/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas/fisiología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Hipocampo/embriología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Ratas
18.
Curr Biol ; 22(19): 1800-7, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22885064

RESUMEN

Microtubule plus-end tracking proteins (+TIPs) are structurally and functionally diverse factors that accumulate at the growing microtubule plus-ends, connect them to various cellular structures, and control microtubule dynamics [1, 2]. EB1 and its homologs are +TIPs that can autonomously recognize growing microtubule ends and recruit to them a variety of other proteins. Numerous +TIPs bind to end binding (EB) proteins through natively unstructured basic and serine-rich polypeptide regions containing a core SxIP motif (serine-any amino acid-isoleucine-proline) [3]. The SxIP consensus sequence is short, and the surrounding sequences show high variability, raising the possibility that undiscovered SxIP containing +TIPs are encoded in mammalian genomes. Here, we performed a proteome-wide search for mammalian SxIP-containing +TIPs by combining biochemical and bioinformatics approaches. We have identified a set of previously uncharacterized EB partners that have the capacity to accumulate at the growing microtubule ends, including protein kinases, a small GTPase, centriole-, membrane-, and actin-associated proteins. We show that one of the newly identified +TIPs, CEP104, interacts with CP110 and CEP97 at the centriole and is required for ciliogenesis. Our study reveals the complexity of the mammalian +TIP interactome and provides a basis for investigating the molecular crosstalk between microtubule ends and other cellular structures.


Asunto(s)
Secuencias de Aminoácidos , Proteínas Asociadas a Microtúbulos/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Humanos , Mamíferos , Espectrometría de Masas , Proteínas Asociadas a Microtúbulos/análisis , Microtúbulos/química , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteoma/análisis , Proteómica/métodos , Transducción de Señal
19.
J Biol Chem ; 286(2): 1627-38, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21056971

RESUMEN

Mitosis is an orchestration of dynamic interaction between chromosomes and spindle microtubules by which genomic materials are equally distributed into two daughter cells. Previous studies showed that CENP-U is a constitutive centromere component essential for proper chromosome segregation. However, the precise molecular mechanism has remained elusive. Here, we identified CENP-U as a novel interacting partner of Hec1, an evolutionarily conserved kinetochore core component essential for chromosome plasticity. Suppression of CENP-U by shRNA resulted in mitotic defects with an impaired kinetochore-microtubule attachment. Interestingly, CENP-U not only binds microtubules directly but also displays a cooperative microtubule binding activity with Hec1 in vitro. Furthermore, we showed that CENP-U is a substrate of Aurora-B. Importantly, phosphorylation of CENP-U leads to reduced kinetochore-microtubule interaction, which contributes to the error-correcting function of Aurora-B. Taken together, our results indicate that CENP-U is a novel microtubule binding protein and plays an important role in kinetochore-microtubule attachment through its interaction with Hec1.


Asunto(s)
Segregación Cromosómica/fisiología , Cinetocoros/fisiología , Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Células HeLa , Histonas , Humanos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo
20.
J Biol Chem ; 285(4): 2488-97, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19889632

RESUMEN

Centrosome cohesion and segregation are accurately regulated to prevent an aberrant separation of duplicated centrosomes and to ensure the correct formation of bipolar spindles by a tight coupling with cell cycle machinery. CPAP is a centrosome protein with five coiled-coil domains and plays an important role in the control of brain size in autosomal recessive primary microcephaly. Previous studies showed that CPAP interacts with tubulin and controls centriole length. Here, we reported that CPAP forms a homodimer during interphase, and the fifth coiled-coil domain of CPAP is required for its dimerization. Moreover, this self-interaction is required for maintaining centrosome cohesion and preventing the centrosome from splitting before the G(2)/M phase. Our biochemical studies show that CPAP forms homodimers in vivo. In addition, both monomeric and dimeric CPAP are required for accurate cell division, suggesting that the temporal dynamics of CPAP homodimerization is tightly regulated during the cell cycle. Significantly, our results provide evidence that CPAP is phosphorylated during mitosis, and this phosphorylation releases its intermolecular interaction. Taken together, these results suggest that cell cycle-regulated phosphorylation orchestrates the dynamics of CPAP molecular interaction and centrosome splitting to ensure genomic stability in cell division.


Asunto(s)
Centrosoma/química , Centrosoma/fisiología , Interfase/fisiología , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , División Celular/fisiología , Dimerización , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Peso Molecular , Fosforilación , Estructura Terciaria de Proteína , Huso Acromático/química , Huso Acromático/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA