Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Mater Today Bio ; 26: 101078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765244

RESUMEN

Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT). The hypothesis posited that the sponge-like Scaffold@MT could potentially enhance bone regeneration and angiogenesis by modulating mitochondrial energy metabolism. Melatonin-loaded gelatin and poly-lactic-acid nanofibers were fabricated using electrospinning, then fragmented into shorter fibers. The sponge-like Scaffold@MT was created through a process involving homogenization, low-temperature lyophilization, and chemical cross-linking, while maintaining the microstructure of the continuous nanofibers. The incorporation of short nanofibers led to a low release of melatonin and increased Young's modulus of the scaffold. Scaffold@MT demonstrated positive biocompatibility by promoting a 14.2 % increase in cell proliferation. In comparison to the control group, Scaffold@MT significantly enhanced matrix mineralization by 3.2-fold and upregulated the gene expression of osteoblast-specific markers, thereby facilitating osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Significantly, Scaffold@MT led to a marked enhancement in the mitochondrial energy function of BMMSCs, evidenced by elevated adenosine triphosphate (ATP) production, mitochondrial membrane potential, and protein expression of respiratory chain factors. Furthermore, Scaffold@MT promoted the migration of human umbilical vein endothelial cells (HUVECs) and increased tube formation by 1.3 times compared to the control group, accompanied by an increase in vascular endothelial growth factor (VEGFA) expression. The results of in vivo experiments indicate that the implantation of Scaffold@MT significantly improved vascularized bone regeneration in a distal femur defect in rats. Micro-computed tomography analysis conducted 8 weeks post-surgery revealed that Scaffold@MT led to optimal development of new bone microarchitecture. Histological and immunohistochemical analyses demonstrated that Scaffold@MT facilitated bone matrix deposition and new blood vessel formation at the defect site. Overall, the utilization of melatonin-loaded nanofiber sponges exhibits significant promise as a scaffold that promotes bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.

2.
Front Med (Lausanne) ; 11: 1302603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698782

RESUMEN

Background: Though the albumin-to-alkaline phosphatase ratio (AAPR) is used as a biomarker in various diseases, little is known about its effect on outcomes after peritoneal dialysis (PD). Methods: This multicenter retrospective study comprised 357 incident PD patients stratified according to the AAPR. Propensity score matching (PSM) was performed to identify 85 patients for a well-matched comparison of all-cause and cardiovascular mortality. Using Cox regression, we performed univariate and multivariate analyses to investigate the prognostic value of the AAPR and established a Kaplan-Meier curve-predicted nomogram to estimate expected overall survival (OS). We assessed the predictive accuracy using the concordance index (c-index). Results: We found that the optimal cut-off of the AAPR to predict mortality was 0.36. In the present cohort of patients undergoing PD, a low AAPR strongly correlated with worse OS. In the multivariate analysis, the AAPR was shown to be an independent marker predicting reduced OS both before [hazard ratio (HR) 1.68, 95% confidence interval (CI) 1.08-2.60, P = 0.020] and after PSM (HR 1.96, 95% CI 1.06-3.62, P = 0.020). We also observed significant differences in OS in several subgroups, but not the group of patients with comorbidities. A nomogram was established to predict overall survival, with a c-index for prediction accuracy was 0.71 after PSM. Conclusion: AAPR has potential as an independent prognostic biomarker in patients undergoing PD.

3.
Exp Ther Med ; 27(5): 221, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590563

RESUMEN

Ischemic cardiomyopathy (ICM) is a serious cardiac disease with a very high mortality rate worldwide, which causes myocardial ischemia and hypoxia as the main damage. Further understanding of the underlying pathological processes of cardiomyocyte injury is key to the development of cardioprotective strategies. Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of lipid hydroperoxides to lethal levels, resulting in oxidative damage to the cell membrane. The current understanding of the role and regulation of ferroptosis in ICM is still limited, especially in the absence of evidence from large-scale transcriptomic data. Through comprehensive bioinformatics analysis of human ICM transcriptome data obtained from the Gene Expression Omnibus database, the present study identified differentially expressed ferroptosis-related genes (DEFRGs) in ICM. Subsequently, their potential biological mechanisms and cross-talk were analyzed, and hub genes were identified by constructing protein-protein interaction networks. Ferroptosis features such as reactive oxygen species generation, changes in ferroptosis marker proteins, iron ion aggregation and lipid oxidation, were identified in the H9c2 anoxic reoxygenation injury model. Finally, the diagnostic ability of Gap junction alpha-1 (GJA1), Solute carrier family 40 member 1 (SLC40A1), Alpha-synuclein (SNCA) were identified through receiver operating characteristic curves and the expression of DEFRGs was verified in an in vitro model. Furthermore, potential drugs (retinoic acid) that could regulate ICM ferroptosis were predicted based on key DEFRGs. The present article presents new insights into the role of ferroptosis in ICM, investigating the regulatory role of ferroptosis in the pathological process of ICM and advocating for ferroptosis as a potential novel therapeutic target for ICM based on evidence from the ICM transcriptome.

4.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38561102

RESUMEN

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Animales , Ratones , Miocitos Cardíacos , Resveratrol/farmacología , Canal Aniónico 1 Dependiente del Voltaje , Isquemia , Hipoxia , Daño por Reperfusión Miocárdica/prevención & control , Reperfusión
5.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38538223

RESUMEN

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Asunto(s)
Abietanos , Epilepsia , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Abietanos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Transducción de Señal
6.
Mater Today Bio ; 25: 100985, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38333049

RESUMEN

The repair of critical-sized bone defects poses a significant challenge due to the absence of periosteum, which plays a crucial role in coordinating the processes of osteogenesis and vascularization during bone healing. Herein, we hypothesized that melatonin-encapsuled silk Fibronin electrospun nanofibers (SF@MT) could provide intrinsic induction of both osteogenesis and angiogenesis, thereby promoting vascularized bone regeneration. The sustained release of melatonin from the SF@MT nanofibers resulted in favorable biocompatibility and superior osteogenic induction of bone marrow mesenchymal stem cells (BMMSCs). Interestingly, melatonin promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) in a BMMSC-dependent manner, potentially through the upregulation of vascular endothelial growth factor (VEGFA) expression in SF@MT-cultured BMMSCs. SF@MT nanofibers enhanced the BMMSC-mediated angiogenesis by activating the PI3K/Akt signaling pathway. In vivo experiments indicated that the implantation of SF@MT nanofibers into rat critical-sized calvarial defects significantly enhances the production of bone matrix and the development of new blood vessels, leading to an accelerated process of vascularized bone regeneration. Consequently, the utilization of melatonin-encapsulated silk Fibronin electrospun nanofibers shows great promise as a potential solution for artificial periosteum, with the potential to regulate the coupling of osteogenesis and angiogenesis in critical-sized bone defect repair.

7.
Regen Biomater ; 11: rbad096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173773

RESUMEN

The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors. In this study, a poly (l-lactic acid) (PLLA)/hyaluronic acid (HA)-based nanofibrous membrane was fabricated using the coaxial electrospinning technique. The incorporation of irisin into the core-shell structure of PLLA/HA nanofibers (PLLA/HA@Irisin) achieved its sustained release. In vitro experiments demonstrated that the PLLA/HA@Irisin membranes exhibited favorable biocompatibility. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was improved by PLLA/HA@Irisin, as evidenced by a significant increase in alkaline phosphatase activity and matrix mineralization. Mechanistically, PLLA/HA@Irisin significantly enhanced the mitochondrial function of BMMSCs via the activation of the sirtuin 3 antioxidant pathway. To assess the therapeutic effectiveness, PLLA/HA@Irisin membranes were implanted in situ into critical-sized calvarial defects in rats. The results at 4 and 8 weeks post-surgery indicated that the implantation of PLLA/HA@Irisin exhibited superior efficacy in promoting vascularized bone formation, as demonstrated by the enhancement of bone matrix synthesis and the development of new blood vessels. The results of our study indicate that the electrospun PLLA/HA@Irisin nanofibers possess characteristics of a biomimetic periosteum, showing potential for effectively treating critical-sized bone defects by improving the mitochondrial function and maintaining redox homeostasis of BMMSCs.

8.
Semin Dial ; 37(1): 72-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37247845

RESUMEN

BACKGROUND: Fibrinogen to pre-albumin ratio (FPR) is a promising predictor of mortality in various cancers. The aim of this study was to explore the prognostic value of FPR to predict mortality in peritoneal dialysis (PD) patients. METHODS: We retrospectively analyzed 324 incident PD patients form January 2011 to December 2020. Patients were stratified based on the optimal thresholds for FPR at baseline to predict overall and cardiovascular mortality during follow-up. The association of FPR and all-cause and cardiovascular mortality was evaluated by Kaplan-Meier curve and Cox regression analysis. RESULTS: All patients were divided into three groups based on the optimal cutoff value of FPR. Higher FPR levels were strongly correlated with worse overall and cardiovascular mortality in PD patients. Compared with patients in the lowest FPR tertile (<14.3), those in the highest terile (≥18.8) had multivariable-adjusted hazard ratios (95% CI confidence interval) of 3.37 (1.76-6.49) and 2.86 (1.31-6.23) for all-cause and cardiovascular mortality, respectively. Significant differences in overall survival were observed across nearly all subgroups after stratification. CONCLUSIONS: Patients with a high FPR had increased all-cause and cardiovascular mortality. FPR is a potential prognostic indicator in PD patients.


Asunto(s)
Enfermedades Cardiovasculares , Diálisis Peritoneal , Humanos , Estudios Retrospectivos , Diálisis Renal , Enfermedades Cardiovasculares/etiología , Albúminas , Fibrinógeno/análisis
9.
J Ethnopharmacol ; 324: 117617, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38142876

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhi pills (EZP), a traditional Chinese medicine formula prescribed for the treatment of vitiligo, has shown promising efficacy. However, the oral bioactive components and mechanisms underlying the promotion of melanogenesis by EZP remain unclear. AIM OF THE STUDY: This study aimed to investigate the pharmacological basis and mechanism of EZP in promoting melanogenesis. MATERIALS AND METHODS: UHPLC-TOF-MS analysis was used to identify absorbed phytochemicals in serum after oral administration of EZP. Network pharmacology methods were used to predict potential targets and pathways involved in the melanogenic activity of EZP, resulting in the construction of a "compound-target-pathway" network. Zebrafish and B16F10 cells were used to evaluate the effects of EZP on tyrosinase activity and melanin content. Western blot and ELISA analyses were used to validate the effects of EZP on melanogenesis-related proteins, including MITF, TYR, CREB, p-CREB, and cAMP. RESULTS: UHPLC-TOF-MS analysis identified 36 compounds derived from EZP in serum samples. Network pharmacology predictions revealed 89 target proteins associated with the identified compounds and closely related to vitiligo. GO and KEGG analyses indicated the involvement of the cAMP/PKA signaling pathway in the promotion of melanogenesis by EZP. Experimental results showed that EZP increased tyrosinase activity and melanin content in zebrafish and B16F10 cells without inducing toxicity. Western blot and ELISA results suggested that the melanogenic effect of EZP may be related to the activation of the cAMP/PKA signaling pathway. These results confirm the feasibility of combining serum pharmacological and network pharmacological approaches. CONCLUSIONS: EZP have the potential to increase tyrosinase activity and melanin content in zebrafish and cells possibly through activation of the cAMP/PKA pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Melanoma Experimental , Vitíligo , Animales , Melaninas/metabolismo , Pez Cebra , Melanogénesis , Monofenol Monooxigenasa/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/metabolismo
10.
Int J Mol Med ; 52(5)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37800609

RESUMEN

Tanshinone IIA (TSN) extracted from danshen (Salvia miltiorrhiza) could protect cardiomyocytes against myocardial ischemia/reperfusion injury (IRI), however the underlying molecular mechanisms of action remain unclear. The aim of the present study was to identify the protective effects of TSN and its mechanisms of action through in vitro studies. An anoxia/reoxygenation (A/R) injury model was established using H9c2 cells to simulate myocardial IRI in vitro. Before A/R, H9c2 cardiomyoblasts were pretreated with 8 µM TSN or 10 µM ferrostatin­1 (Fer­1) or erastin. The cell counting kit 8 (CCK­8) and lactate dehydrogenase (LDH) assay kit were used to detect the cell viability and cytotoxicity. The levels of total iron, glutathione (GSH), glutathione disulfide (GSSG), malondialdehyde (MDA), ferrous iron, caspase­3 activity, and reactive oxygen species (ROS) were assessed using commercial kit. The levels of mitochondrial membrane potential (MMP), lipid ROS, cell apoptosis, and mitochondrial permeability transition pore (mPTP) opening were detected by flow cytometry. Transmission electron microscopy (TEM) was used to observed the mitochondrial damage. Protein levels were detected by western blot analysis. The interaction between TSN and voltage­dependent anion channel 1 (VDAC1) was evaluated by molecular docking simulation. The results showed that pretreatment with TSN and Fer­1 significantly decreased cell viability, glutathione peroxidase 4 (GPX4) protein and GSH expression and GSH/GSSG ratio and inhibited upregulation of LDH activity, prostaglandin endoperoxide synthase 2 and VDAC1 protein expression, ROS levels, mitochondrial injury and GSSG induced by A/R. TSN also effectively inhibited the damaging effects of erastin treatment. Additionally, TSN increased MMP and Bcl­2/Bax ratio, while decreasing levels of apoptotic cells, activating Caspase­3 and closing the mPTP. These effects were blocked by VDAC1 overexpression and the results of molecular docking simulation studies revealed a direct interaction between TSN and VDAC1. In conclusion, TSN pretreatment effectively attenuated H9c2 cardiomyocyte damage in an A/R injury model and VDAC1­mediated ferroptosis and apoptosis served a vital role in the protective effects of TSN.


Asunto(s)
Ferroptosis , Daño por Reperfusión Miocárdica , Humanos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Disulfuro de Glutatión/metabolismo , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Apoptosis , Hierro/metabolismo
11.
Exp Ther Med ; 26(5): 534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869642

RESUMEN

Acute myocardial infarction is a life-threatening condition with high mortality and complication rates. Although myocardial reperfusion can preserve ischemic myocardial tissue, it frequently exacerbates tissue injury, a phenomenon known as ischemia-reperfusion injury (IRI). However, the underlying pathological mechanisms of IRI remain to be completely understood. Ferroptosis is a novel type of regulated cell death that is associated with various pathological conditions, including angiocardiopathy. The purpose of this article was to elucidate the possible mechanistic role of ferroptosis in IRI through bioinformatics analysis and experimental validation. Healthy and IRI heart samples were screened for differentially expressed ferroptosis-related genes and functional enrichment analysis was performed to determine the potential crosstalk and pathways involved. A protein-protein interaction network was established for IRI, and 10 hub genes that regulate ferroptosis, including HIF1A, EGFR, HMOX1, and ATF3 were identified. In vitro, an anoxia/reoxygenation (A/R) injury model was established using H9c2 cardiomyoblasts to validate the bioinformatics analysis results, and extensive ferroptosis was detected. A total of 4 key hub genes and 3 key miRNAs were also validated. It was found that IRI was related to the aberrant infiltration of immune cells and the small-molecule drugs that may protect against IRI by preventing ferroptosis were identified. These results provide novel insights into the role of ferroptosis in IRI, which can help identify novel therapeutic targets.

12.
J Orthop Surg Res ; 18(1): 518, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480032

RESUMEN

BACKGROUND: Low back pain (LBP) has become the second leading cause of disability worldwide, which has brought great economic burden to people. It is generally believed that intervertebral disc degeneration (IDD) is the main cause of LBP. This study aimed to explore the role of circ-STC2 in the pathogenesis of IDD. METHODS: Nucleus pulposus cells (NPCs) were treated with T-Butyl Hydrogen Peroxide (TBHP) to establish IDD model in vitro. RT-qPCR was performed to detect mRNA expressions. The cell viability was detected with CCK-8 assay. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), Fe2+ and glutathione (GSH) of NPCs were measured by corresponding kits. The protein expressions were determined by western blot. Dual-luciferase reporter and RNA pull-down assays were conducted to verify the relationship between circ-STC2 or transferrin recepto 2 (TFR2) and miR-486-3p. RESULTS: Circ-STC2 and TFR2 expressions were up-regulated in IDD tissues, and miR-486-3p expression was down-regulated. Knockdown of circ-STC2 promoted the cell viability and inhibited the ferroptosis of the NPCs. The GSH levels, and glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) protein expressions were increased, the LDH, MDA and Fe2+ levels and achaete-scute complexlike 4 (ASCL4) protein expressions were decreased after circ-STC2 knockdown. Knockdown of miR-486-3p abrogated the si-circ-STC2 effects and overexpression of TFR2 reversed the miR-486-3p mimic effects. CONCLUSIONS: Circ-STC2 inhibits the cell viability, induced the ferroptosis of the TBHP treated NPCs via targeting miR-486-3p/TFR2 axis.


Asunto(s)
Ferroptosis , Degeneración del Disco Intervertebral , Dolor de la Región Lumbar , MicroARNs , Núcleo Pulposo , Humanos , Apoptosis , Western Blotting , Proliferación Celular , Supervivencia Celular , Glicoproteínas , Peróxido de Hidrógeno , Péptidos y Proteínas de Señalización Intercelular , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , L-Lactato Deshidrogenasa/metabolismo , Dolor de la Región Lumbar/metabolismo , Dolor de la Región Lumbar/patología , MicroARNs/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología
13.
J Inflamm Res ; 16: 995-1015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923465

RESUMEN

Introduction: Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods: We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results: We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion: This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.

14.
J Int Med Res ; 51(2): 3000605231154414, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36851845

RESUMEN

OBJECTIVE: To evaluate the therapeutic effects of applying internal fixation with a T-shaped locking plate that was used on the distal radius in fractures of the anterior process of the calcaneus (APC) with calcaneocuboid (CC) joint injury. METHODS: This retrospective study enrolled adult patients diagnosed with APC with CC joint injury that had received internal fixation with a T-shaped locking plate of the distal radius. Group NA underwent open reduction with 'not-across' CC joint plate fixation; and group A underwent open reduction with 'across' CC joint locking plate fixation. The outcomes were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) score, a visual analogue scale (VAS) pain score and radiological evaluations. RESULTS: A total of 72 patients were enrolled in the study; 36 in each group. At 1 month after surgery, the outcomes of group NA were superior to group A in terms of AOFAS and VAS scores. Compared with group A, group NA showed significantly lower intraoperative blood loss, operation time and length of hospital stay. There were no significant differences in the postoperative improvement of Bolher's and Gissane's angles between the two groups. CONCLUSION: Early functional recovery was faster in group NA than group A.


Asunto(s)
Calcáneo , Fracturas Óseas , Adulto , Humanos , Calcáneo/diagnóstico por imagen , Calcáneo/cirugía , Estudios Retrospectivos , Extremidad Inferior , Fracturas Óseas/diagnóstico por imagen , Fracturas Óseas/cirugía , Fijación Interna de Fracturas
15.
Zhongguo Zhong Yao Za Zhi ; 48(1): 183-192, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725270

RESUMEN

This study aims to explore the anti-depression mechanism of Zuojin Pills based on the plasma constituents, network pharmacology, and experimental verification. UHPLC-TOF-MS was used for qualitative analysis of Zuojin Pills-containing serum. Targets of the plasma constituents and the disease were retrieved from PharmMapper and GeneCards. Then the protein-protein interaction(PPI) network was constructed and core targets were screened for GO term enrichment and KEGG pathway enrichment. Cytoscape 3.7.2 was employed construct the "compound-target-pathway" network and the targets and signaling pathways of Zuojin Pills against depression were predicted. CUMS-induced depression mouse model was established to verify the key targets. The results showed that a total of 21 constituents migrating to blood of Zuojin Pills were identified, which were mainly alkaloids. A total of 155 common targets of the constituents and the disease and 67 core targets were screened out. KEGG enrichment and PPI network analysis showed that Zuojin Pills may play a role in the treatment of depression through AMPK/SIRT1, NLRP3, insulin and other targets and pathways. Furthermore, the results of animal experiments showed that Zuojin Pills could significantly improve the depression behaviors of depression, reduce the levels of IL-1ß, IL-6 and TNF-α in hippocampus and serum, activate AMPK/SIRT1 signaling, and reduce the protein expression of NLRP3. In conclusion, Zuojin Pills may play a role in the treatment of depression by activating AMPK/SIRT1 signaling pathway, and inhibiting NLRP3 activation and neuroinflammation in the hippocampus of mice.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacología en Red , Animales , Ratones , Proteínas Quinasas Activadas por AMP , Cromatografía Líquida de Alta Presión , Proteína con Dominio Pirina 3 de la Familia NLR , Sirtuina 1 , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular
16.
Pharm Biol ; 61(1): 100-110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36548216

RESUMEN

CONTEXT: Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE: We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS: Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS: Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS: Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.


Asunto(s)
Anticonvulsivantes , Epilepsia , Ratas , Animales , Anticonvulsivantes/farmacología , Ratas Wistar , Cognición , Epilepsia/tratamiento farmacológico , Plasticidad Neuronal
17.
Front Surg ; 9: 905946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439544

RESUMEN

Objective: This study aimed to examine the effect of the intermediate pedicle screws and their insertion depth on sagittal balance and functional outcomes of lumbar fracture. Methods: This study reviewed 1,123 patients with lumbar fractures between January 2015 and June 2019, and 97 patients were ultimately enrolled in this study: Group A: 32 patients in the four-pedicle screws fixation group; Group B: 28 patients in the six-pedicle screws fixation with long intermediate pedicle screws group; Group C: 37 patients in the six-pedicle screws fixation with short intermediate pedicle screws group. The radiographic outcomes were assessed with lumbar lordosis (LL), segmental lordosis (SL), fractured vertebral lordosis (FL), sacral slope (SS), pelvic incidence (PI), and pelvic tilt (PT). The visual analog scale (VAS) and the Oswestry disability index (ODI) scores were used for assessing functional outcomes. Results: The PI, PT, and SS showed no significant differences between the three groups (P > 0.05). Compared with Group A, Groups B and C showed better FL, SL, and LL 1 month after operation (5.96 ± 1.67/4.81 ± 1.49 vs. 8.78 ± 2.90, 24.39 ± 3.80/23.70 ± 4.10 vs. 20.09 ± 3.33, 39.07 ± 3.61/39.51 ± 3.23 vs. 36.41 ± 3.11, P < 0.05) and at final follow-up (8.75 ± 1.40/6.78 ± 1.70 vs. 11.31 ± 2.61, 22.11 ± 3.39/23.70 ± 4.10 vs. 17.66 ± 2.60, 38.04 ± 3.49/39.51 ± 3.23 vs. 35.41 ± 3.11, P < 0.05). The FL of Group C were significantly better than those of Group B 1 month after operation (4.81 ± 1.49 vs. 5.96 ± 1.67, P < 0.05) and at final follow-up (6.78 ± 1.70 vs. 8.75 ± 1.40, P < 0.05). No significant differences in VAS and ODI were found between Group A and Group B (P > 0.05). There were also no significant differences in VAS and ODI between Group A and Group C (P > 0.05). However, The VAS and ODI of Group C showed better than Group B 1 month after operation (3.05 ± 0.70 vs. 3.54 ± 0.79, 17.65 ± 3.41 vs. 19.71 ± 2.35, P < 0.05) and at final follow-up (2.19 ± 0.46 vs. 2.57 ± 0.57, 13.81 ± 2.20 vs. 15.57 ± 1.73, P < 0.05). Conclusions: Both four-pedicle screw fixation and six-pedicle screw fixation were effective in treating lumbar fracture. However, six-pedicle screw fixation with short intermediate pedicle screws showed better radiographic and functional outcomes after surgery. Therefore, we recommend six-pedicle screws fixation with short intermediate pedicle screws for the long-term recovery of sagittal balance and function.

18.
Front Surg ; 9: 999406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277290

RESUMEN

Background: Endplate fractures is an important factor affecting the curative effect of percutaneous kyphoplasty for spinal fracture. The purpose of this study is to investigate the effect of sealing endplate fracture with bone cement on minimally invasive treatment of spinal fracture. Methods: A total of 98 patients with osteoporotic vertebral fractures combined with endplate fractures treated with bone cement surgery in our hospital were retrospectively analyzed. They were grouped according to whether bone cement was involved in the endplate fractures. Group A: bone cement was not only distributed in the fractured vertebral body, but also dispersed into the endplate fractures. Group B: bone cement was confined to the fractured vertebra but did not diffuse into the cracks of the endplate. The basic information, imaging changes of the fractured vertebral body, VAS score, ODI score, bone cement distribution and postoperative complications of the two groups were analyzed and compared. Results: The height of the injured vertebra and the kyphotic Cobb angle in the two groups were significantly improved after surgery, but the anterior height of the vertebra in group B was lower than that in group A and the kyphotic Cobb angle was higher than that in group A at the last follow-up (P < 0.05). VAS score and ODI score in 2 groups were significantly improved after operation (P < 0.05), but the VAS score and ODI score in group A were lower than those in group B at the last follow-up (P < 0.05). The incidence of bone cement leakage and adjacent vertebral fracture in group A was higher than that in group B (P < 0.05). Conclusion: Diffusion of bone cement into the cracks of the endplate may also restore and maintain the height of the injured vertebra, relieve pain and restore lumbar function. However, diffusion of bone cement into the cracks of the endplate can increase the incidence of cement leakage and adjacent vertebral fractures.

19.
BMC Musculoskelet Disord ; 23(1): 843, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064666

RESUMEN

BACKGROUND: This study aimed to analyze the efficacy of the simultaneous rectification of adjacent asymptomatic lumbar disc herniation (asLDH) of L5-S1 isthmic spondylolisthesis (IS). METHODS: One hundred and forty-eight patients with L5-S1 IS, and simultaneous L4-5 asLDH, were recruited between January 2012 and December 2017, for this study. Group A: seventy-two patients received PLIF at L5-S1. Group B: seventy-six patients received PLIF at L4-S1. The radiographic outcomes were assessed via the lumbar lordosis (LL), segmental lordosis (SL), sacral slope (SS), pelvic incidence (PI), pelvic tilt (PT), PI-LL and slip degree (SD). The functional outcomes were evaluated via the visual analog scale (VAS), Oswestry disability index (ODI), and reoperation rate. The potential risk hazards for reoperation were identified using both uni- and multivariate logistic regression analyses. RESULTS: The postoperative LL, SL, PT, SS, SD, VAS, and ODI exhibited vast improvements (P < 0.05). Relative to Group A, Group B exhibited markedly better LL, SL, PT, PI-LL,VAS and ODI scores at the final follow-up (P < 0.05). Group B also achieved better SD values post surgery than Group A (P < 0.05). The reoperation rate was remarkably elevated in Group A, compared to Group B (P < 0.05). The multivariate logistic regression analysis showed the L4-5 asLDH grade was a stand-alone risk hazard for reoperation, whereas, pre-SL and pre-LL offered protection against reoperation (P < 0.05). CONCLUSIONS: L4-S1 PLIF is recommended to correct asLDH in L5-S1 IS patients, with high-grade disc herniation and abnormal sagittal alignment.


Asunto(s)
Desplazamiento del Disco Intervertebral , Lordosis , Espondilolistesis , Humanos , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Sacro/diagnóstico por imagen , Sacro/cirugía , Espondilolistesis/diagnóstico por imagen , Espondilolistesis/cirugía
20.
World Neurosurg ; 167: e1225-e1230, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089275

RESUMEN

BACKGROUND: This study aims to compare the clinical efficacy of percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral asymmetric compression fracture (OVACF). METHODS: This study retrospectively reviewed the patients who were diagnosed with OVACF between September 2015 and July 2019. Forty-one patients received PVP surgery (group A), and 44 patients received PKP surgery (group B). The visual analog scale, Oswestry Disability Index, scoliosis angle (SA), height of long side, height of short side (HS), and lateral height difference (LHD) before operation and 3 days and 1 year after operation were compared between both groups. The operation time, fluoroscopic time, hospital stay, cement volume, and complications were also compared between both groups. RESULTS: The visual analog scale and Oswestry Disability Index differed significantly between the groups 1 year after operation (P < 0.05). Compared with the preoperative results, there were significant differences in SA, height of long side, HS, and LHD 3 days and 1 year after operation (P < 0.05). Compared with group A, group B showed significantly better in SA, HS, and LHD in group B 3 days and 1 year after operation (P < 0.05). More patients in group A suffered cement leakage and scoliosis than group B after operation (P < 0.05). CONCLUSIONS: In our study, PVP and PKP are both effective in the treatment of OVACF, but PKP surgery had better long-term clinical efficacy.


Asunto(s)
Fracturas por Compresión , Cifoplastia , Fracturas Osteoporóticas , Escoliosis , Fracturas de la Columna Vertebral , Vertebroplastia , Humanos , Cifoplastia/métodos , Fracturas por Compresión/diagnóstico por imagen , Fracturas por Compresión/cirugía , Fracturas por Compresión/complicaciones , Escoliosis/complicaciones , Estudios Retrospectivos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía , Fracturas de la Columna Vertebral/complicaciones , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/cirugía , Vertebroplastia/métodos , Resultado del Tratamiento , Cementos para Huesos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...