Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 147(3): 821-833, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32852634

RESUMEN

PURPOSE: Microvascular invasion (MVI) is a valuable predictor of survival in hepatocellular carcinoma (HCC) patients. This study developed predictive models using eXtreme Gradient Boosting (XGBoost) and deep learning based on CT images to predict MVI preoperatively. METHODS: In total, 405 patients were included. A total of 7302 radiomic features and 17 radiological features were extracted by a radiomics feature extraction package and radiologists, respectively. We developed a XGBoost model based on radiomics features, radiological features and clinical variables and a three-dimensional convolutional neural network (3D-CNN) to predict MVI status. Next, we compared the efficacy of the two models. RESULTS: Of the 405 patients, 220 (54.3%) were MVI positive, and 185 (45.7%) were MVI negative. The areas under the receiver operating characteristic curves (AUROCs) of the Radiomics-Radiological-Clinical (RRC) Model and 3D-CNN Model in the training set were 0.952 (95% confidence interval (CI) 0.923-0.973) and 0.980 (95% CI 0.959-0.993), respectively (p = 0.14). The AUROCs of the RRC Model and 3D-CNN Model in the validation set were 0.887 (95% CI 0.797-0.947) and 0.906 (95% CI 0.821-0.960), respectively (p = 0.83). Based on the MVI status predicted by the RRC and 3D-CNN Models, the mean recurrence-free survival (RFS) was significantly better in the predicted MVI-negative group than that in the predicted MVI-positive group (RRC Model: 69.95 vs. 24.80 months, p < 0.001; 3D-CNN Model: 64.06 vs. 31.05 months, p = 0.027). CONCLUSION: The RRC Model and 3D-CNN models showed considerable efficacy in identifying MVI preoperatively. These machine learning models may facilitate decision-making in HCC treatment but requires further validation.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Aprendizaje Profundo , Neoplasias Hepáticas/irrigación sanguínea , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/patología , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Masculino , Microcirculación , Persona de Mediana Edad , Modelos Estadísticos , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Estudios Retrospectivos
2.
Theranostics ; 10(24): 11080-11091, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042271

RESUMEN

Microsatellite instability (MSI) has been approved as a pan-cancer biomarker for immune checkpoint blockade (ICB) therapy. However, current MSI identification methods are not available for all patients. We proposed an ensemble multiple instance deep learning model to predict microsatellite status based on histopathology images, and interpreted the pathomics-based model with multi-omics correlation. Methods: Two cohorts of patients were collected, including 429 from The Cancer Genome Atlas (TCGA-COAD) and 785 from an Asian colorectal cancer (CRC) cohort (Asian-CRC). We established the pathomics model, named Ensembled Patch Likelihood Aggregation (EPLA), based on two consecutive stages: patch-level prediction and WSI-level prediction. The initial model was developed and validated in TCGA-COAD, and then generalized in Asian-CRC through transfer learning. The pathological signatures extracted from the model were analyzed with genomic and transcriptomic profiles for model interpretation. Results: The EPLA model achieved an area-under-the-curve (AUC) of 0.8848 (95% CI: 0.8185-0.9512) in the TCGA-COAD test set and an AUC of 0.8504 (95% CI: 0.7591-0.9323) in the external validation set Asian-CRC after transfer learning. Notably, EPLA captured the relationship between pathological phenotype of poor differentiation and MSI (P < 0.001). Furthermore, the five pathological imaging signatures identified from the EPLA model were associated with mutation burden and DNA damage repair related genotype in the genomic profiles, and antitumor immunity activated pathway in the transcriptomic profiles. Conclusions: Our pathomics-based deep learning model can effectively predict MSI from histopathology images and is transferable to a new patient cohort. The interpretability of our model by association with pathological, genomic and transcriptomic phenotypes lays the foundation for prospective clinical trials of the application of this artificial intelligence (AI) platform in ICB therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Interpretación de Imagen Asistida por Computador/métodos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inestabilidad de Microsatélites , Estudios de Cohortes , Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Daño del ADN , Reparación del ADN , Conjuntos de Datos como Asunto , Aprendizaje Profundo , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Modelos Genéticos , Curva ROC , Recto/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...