Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Vis ; 29: 329-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38264610

RESUMEN

Purpose: Autosomal recessive cone and cone-rod dystrophies (CD/CRD) are inherited forms of vison loss. Here, we report on and correlate the clinical phenotypes with the underlying genetic mutations. Methods: Clinical information was collected from subjects, including a family history with a chart review. They underwent a full ophthalmic examination, including best-corrected visual acuity, direct and indirect ophthalmoscopy, color vision testing, color fundus photography, contrast sensitivity, autofluorescence, and spectral domain-optical coherence tomography (SD-OCT), and full-field electroretinography. Next-generation panel-based genetic testing was used to identify DNA variants in subject buccal swab samples. Results: Genetic testing in two patients revealed three novel variants in the TTLL5 gene associated with CD/CRD: two missense variants (c.1433G>A;p.(Arg478Gln), c.241C>G;p.(Leu81Val), and one loss-of-function variant (c.2384_2387del;p.(Ala795Valfs*9). Based on in-silico analysis, structural modeling, and comparison to previously reported mutations, these novel variants are very likely to be disease-causing mutations. Combining retinal imaging with SD-OCT analysis, we observed an unusual sheen in the CD/CRD phenotypes. Conclusion: Based on the protein domain location of novel TTLL5 variants and the localization of TTLL5 to the connecting cilium, we conclude that the CD/CRD disease phenotype is characterized as a ciliopathy caused by protein tracking dysfunction. This initially affects cone photoreceptors, where photoreceptor cilia express a high level of TTLL5, but extends to rod photoreceptors over time. Fundus photography correlated with SD-OCT imaging suggests that the macular sheen characteristically seen with TTLL5 mutations derives from the photoreceptor's outer segments at the posterior pole.


Asunto(s)
Distrofia del Cono , Distrofias de Conos y Bastones , Distrofias Retinianas , Humanos , Células Fotorreceptoras Retinianas Conos , Tomografía de Coherencia Óptica , Tubulina (Proteína) , Fenotipo , Tirosina , Proteínas Portadoras
2.
Acta Neuropathol Commun ; 8(1): 64, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375856

RESUMEN

RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Procesamiento Postranscripcional del ARN/genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...