Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Toxicol ; 38(10): 2287-2297, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37318315

RESUMEN

Metastasis is commonly occurred in gastric cancer, and it is caused and responsible for one of the major cancer-related mortality in gastric cancer patients. Allyl isothiocyanate (AITC), a natural product, exhibits anticancer activities in human many cancer cells, including gastric cancer. However, no available report shows AITC inhibits gastric cancer cell metastasis. Herein, we evaluated the impact of AITC on cell migration and invasion of human gastric cancer AGS cells in vitro. AITC at 5-20 µM did not induce significant cell morphological damages observed by contrast-phase microscopy but decreased cell viability assayed by flow cytometry. After AGS cells were further examined by atomic force microscopy (AFM), which indicated AITC affected cell membrane and morphology in AGS cells. AITC significantly suppressed cell motility examined by scratch wound healing assay. The results of the gelatin zymography assay revealed that AITC significantly suppressed the MMP-2 and MMP-9 activities. In addition, AITC suppressed cell migration and invasion were performed by transwell chamber assays at 24 h in AGS cells. Furthermore, AITC inhibited cell migration and invasion by affecting PI3K/AKT and MAPK signaling pathways in AGS cells. The decreased expressions of p-AKTThr308 , GRB2, and Vimentin in AGS cells also were confirmed by confocal laser microscopy. Our findings suggest that AITC may be an anti-metastasis candidate for human gastric cancer treatment.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Gástricas/metabolismo , Transducción de Señal , Movimiento Celular , Línea Celular Tumoral , Invasividad Neoplásica , Proliferación Celular
2.
Oncol Rep ; 48(6)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222295

RESUMEN

The metastasis of human osteosarcoma (OS) shows a difficult­to­treat clinical scenario and results in decreased quality of life and diminished survival rates. Finding or developing novel treatments to improve the life quality of patients is urgent. Bisdemethoxycurcumin (BDMC), a natural product, was obtained from the rhizome of turmeric (Curcuma longa) and exerts antitumor activities in numerous human cancer cell lines. At present, there is no study showing BDMC effects on OS cell migration and invasion. In the present study, the effects of BDMC on cell migration and invasion of OS U­2 OS cells were investigated in vitro. Cell viability and proliferation were measured by flow cytometric and MTT assays, respectively. Cell motility, MMP­2 and ­9 activity, and cell migration and invasion were assayed by scratch wound healing, gelatin zymography, and Transwell chamber assays, respectively. The protein expression levels were measured by western blotting. BDMC at 20 and 40 µM significantly reduced total cell viability, and BDMC at 5 and 10 µM significantly inhibited cell motility in U­2 OS cells. BDMC significantly suppressed the activities of MMP­2 and MMP­9 in U­2 OS cells. BDMC suppressed cell invasion and migration after 24 h treatment in U­2 OS cells, and these effects were in a dose­dependently manner. Results from western blotting indicated that BDMC significantly decreased the protein expression levels of PI3K/Akt/NF­κB, PI3K/Akt/GSK3ß, and MAPK pathway in U­2 OS cells. Furthermore, BDMC inhibited uPA, MMP­2, MMP­9, MMP­13, N­cadherin, VE­cadherin, and vimentin but increased E­cadherin in U­2 OS cells. Based on these observations, it was suggested that BDMC may be a potential candidate against migration and invasion of human OS cells in the future.


Asunto(s)
Productos Biológicos , Neoplasias Óseas , Osteosarcoma , Productos Biológicos/farmacología , Neoplasias Óseas/patología , Cadherinas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Diarilheptanoides , Gelatina/farmacología , Gelatina/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Invasividad Neoplásica , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Transducción de Señal , Vimentina/metabolismo
3.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008959

RESUMEN

Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Diarilheptanoides/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciencias Bioconductuales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/etiología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Desnudos , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Anticancer Res ; 41(9): 4343-4351, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34475054

RESUMEN

BACKGROUND/AIM: Ally lisothiocyanate (AITC), a constituent of naturally occurring isothiocyanates (ITCs) found in some Brassica vegetables, has been previously demonstrated to have anti-carcinogenic activity. However, there is no available information showing that AITC induces DNA damage and alters DNA damage repair proteins in human breast cancer MCF-7 cells. MATERIALS AND METHODS: In the present study, we investigated the effects of AITC on DNA damage and repair responses in human breast cancer MCF-7 cells in vitro. Cell viability was measured by flow cytometric assay. DNA condensation (apoptotic cell death) and DNA fragmentation (laddered DNA) were assayed by DAPI staining and DNA gel electrophoresis assays, respectively. Furthermore, DNA damage (comet tail) was measured by the comet assay. Western blotting was used to measure the expression of DNA damage- and repair-associated proteins. RESULTS: AITC decreased cell viability in a dose-dependent and induced apoptotic cell death (DNA condensation and fragmentation) and DNA damage in MCF-7 cells. AITC increased p-ATMSer1981, p-ATRSer428, p53, p-p53Ser15, p-H2A.XSer139, BRCA1, and PARP at 10-30 µM at 24 and 48 h treatments. However, AITC decreased DNA-PK at 24 and 48 h treatment, and decreased MGMT at 48 h in MCF-7 cells. CONCLUSION: AITC induced cytotoxic effects (decreased viable cell number) through induction of DNA damage and condensation and altered DNA damage and repair associated proteins in MCF-7 cells in vitro.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/genética , Reparación del ADN/efectos de los fármacos , Isotiocianatos/farmacología , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Relación Dosis-Respuesta a Droga , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Células MCF-7
5.
Oncol Lett ; 19(3): 2397-2403, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194739

RESUMEN

Furoquinolone and its derivatives exhibit antimicrobial, anti-allergic, anti-inflammatory and anticancer properties. The present study investigated the anti-tumor activity of synthesized intermediates of furoquinolone in human promyelocytic leukemia HL-60 cells. The biological effects of the active compound ethyl 2-anilino-4-oxo-4,5-dihydrofuran-3-carboxylate (compound 131) were examined in HL-60 cells. The following properties were analyzed: Cell survival, cell cycle profile, caspase-3 activity, Bax and Bcl-2 expression, the amount of intracellular Ca2+, the number of reactive oxygen species (ROS) and the mitochondrial membrane potential. Compound 131 (50% cytotoxic concentration, 23.5 µM) significantly reduced the proliferation of HL-60 cells and was revealed to induce apoptosis in HL-60 cells in a concentration-dependent manner. Moreover, this was associated with the activation of caspase-3, upregulation of Bax, an increase in intracellular Ca2+ and ROS production, and a decrease in mitochondrial membrane potential and Bcl-2 expression levels. Compound 131, a novel 4,5-dihydrofuran-3-carboxylate, induced apoptosis in HL-60 cells via the increase of intracellular Ca2+ and ROS to alter the mitochondrial membrane potential and the protein level of Bax and Bcl-2, as well as activating caspase-3. The results of the current study indicate that compound 131 may represent a promising compound for the development of anti-leukemia therapeutics.

6.
Bioorg Med Chem Lett ; 29(23): 126742, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648857

RESUMEN

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, occasionally causes severe central nervous system disorders in the risk zone where more than 3 billion people reside. Our prior studies demonstrated antiviral potential of 4,5-dihydrofuran-3-carboxylate compound CW-33 (ethyl 2-(3',5'-dimethylanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) and its derivative CW-33A ((ethyl 2-(2-fluoroanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) against JEV infection ((Int. J. Mol. Sci. 2016, 17: E1386; Sci. Rep. 2018, 8: 16595). This study synthesized six new CW-33 derivatives containing chloro, or bromo groups at the C-2, C-3, or C-4 of anilino ring of CW-33, and assessed the antiviral activity and mechanisms of these chloro- and bromo-anilino substitutedderivatives. CW-33K, CW-33L and CW-33M had the bromo-substituents at the C-2, C-3, or C-4 of anilino ring of CW-33, respectively, showing the higher anti-JEV activity than CW-33 and other derivatives. CW-33K (ethyl 2-(2-bromoanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate) exhibited the highest antiviral efficacy and therapeutic index. The IC50 value of CW-33K was less than 5 µM for reducing JEV-induced cytopathic effect, virus infectivity and virus yield. CW-33K significantly inhibited the JEV replication at the early and late stages, suppressing viral RNA synthesis and intracellular JEV particle production. The study demonstrated that the CW-33 derivative with a bromosubstitutionat the C-2 anilino ring improved the antiviral activity JEV, providing the structure-antiviral activity relationship for the development of anti-JEV agents.


Asunto(s)
Antivirales/uso terapéutico , Efecto Citopatogénico Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Antivirales/farmacología , Humanos
7.
Am J Chin Med ; 47(4): 841-863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31096772

RESUMEN

Fisetin, a naturally occurring flavonoid, is found in common fruits and vegetables and has been shown to induce cytotoxic effects in many human cancer cell lines. No information has shown that fisetin induced cell cycle arrest and apoptosis in mouse leukemia WEHI-3 cells. We found that fisetin decreased total viable cells through G0/G1 phase arrest and induced sub-G1 phase (apoptosis). We have confirmed fisetin induced cell apoptosis by the formation of DNA fragmentation and induction of apoptotic cell death. Results indicated that fisetin induced intracellular Ca 2+ increase but decreased the ROS production and the levels of ΔΨ m in WEHI-3 cells. Fisetin increased the activities of caspase-3, -8 and -9. Cells were pre-treated with inhibitors of caspase-3, -8 and -9 and then treated with fisetin and results showed increased viable cell number when compared to fisetin treated only. Fisetin reduced expressions of cdc25a but increased p-p53, Chk1, p21 and p27 that may lead to G0/G1 phase arrest. Fisetin inhibited anti-apoptotic protein Bcl-2 and Bcl-xL and increased pro-apoptotic protein Bax and Bak. Furthermore, fisetin increased the protein expression of cytochrome c and AIF. Fisetin decreased cell number through G0/G1 phase arrest via the inhibition of cdc25c and induction of apoptosis through caspase-dependent and mitochondria-dependent pathways. Therefore, fisetin may be useful as a potential therapeutic agent for leukemia.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Flavonoides/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Leucemia/genética , Leucemia/patología , Animales , Flavonoles , Ratones , Células Tumorales Cultivadas
8.
Anticancer Res ; 39(4): 1839-1847, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30952724

RESUMEN

BACKGROUND/AIM: Casticin shows anti-cancer effects in many types of cancer. However, there is no information regarding its role in DNA damage in human bladder cancer. The aim of this study was to investigate the effects of casticin on TSGH-8301 cells in vitro. MATERIALS AND METHODS: Viability of cells was assayed by flow cytometry. DNA damage was assayed by DAPI staining, comet assay, and gel electrophoresis. Protein levels were examined by western blotting and confocal laser microscopy. RESULTS: Casticin decreased viability of cells and induced DNA damage. Furthermore, casticin decreased expression of p-ATM, p-ATR, MDC1 and MGMT levels after 48 h of treatment, however, it increased p-ATR and MGMT levels after 12 h. In contrast, casticin increased the levels of p-p53, p-H2A.X, and PARP after 48 h of treatment. As shown by confocal microscopy, casticin affected the translocation of DNA-PKcs and p-p53 to the nucleus of TSGH-8301 cells. CONCLUSION: Casticin decreased viability of human bladder cancer cells through DNA damage.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Daño del ADN , Reparación del ADN/efectos de los fármacos , Flavonoides/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
9.
In Vivo ; 33(3): 801-810, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028200

RESUMEN

BACKGROUND/AIM: Evidence has indicated that fisetin induces cytotoxic effects in human cancer cell lines, including the inhibition of cell migration and invasion, however, the exact molecular mechanism of action of fisetin in human osteosarcoma cells remains unclear. MATERIALS AND METHODS: The anti-metastatic mechanisms of fisetin in human osteosarcoma U-2 OS cells were investigated in vitro. RESULTS: Fisetin reduced the viability of cells at different concentrations (2.5, 5 and 10 µM) as measured by flow cytometric assay. Fisetin suppressed cell mobility, migration and invasion of U-2 OS cells, as shown by wound healing assay and transwell filter chambers, respectively. The gelatin zymography assay showed that fisetin inhibited MMP-2 activity in U-2 OS cells. Results from western blotting indicated that fisetin reduced the levels of pEGFR, SOS-1, GRB2, Ras, PKC, p-ERK1/2, p-JNK, p-p-38, VEGF, FAK, RhoA, PI3K, p-AKT, NF-ĸB, uPA, MMP-7, MMP-9, and MMP-13, but increased GSK3ß and E-cadherin in U-2 OS cells after 48 h of treatment. CONCLUSION: Fisetin can be used in the future, as a target for the treatment of metastasis of human osteosarcoma cells.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Flavonoides/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , FN-kappa B/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Flavonoles , Humanos , Modelos Biológicos , Transducción de Señal
10.
Int J Mol Med ; 43(5): 2024-2032, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30816489

RESUMEN

In a previous study from our group, a novel compound, namely CW­33 (ethyl 2­(3',5'­dimethylanilino)­â€‹4­oxo­4,5­dihydrofuran­3­carboxylate) was identified that exhibited antiviral activity for Japanese encephalitis virus (JEV). The viral NS2B­NS3 serine protease serves an important role in cytoplasmic cleavage events that occur during viral polyprotein maturation. The inhibition of viral RNA and protein syntheses was responsible for the antiviral activities of the novel furanonaphthoquinone derivatives that were discovered for the prevention of JEV infection. Consequently, the present study examined the molecular docking simulation of JEV protease with compound CW­33 and its analogues, and developed quantitative structure­activity relationship (QSAR) models to assess the potential antiviral activities of these compounds with regard to JEV. Molecular docking simulation indicated the potential ligand­protein interactions associated with the antiviral activities of these compounds. According to the results of the QSAR models, the secondary amine group was an important moiety required for compound bioactivity, which enabled the formation of hydrogen bonding with the residue Glu155. Furthermore, the aromatic ring mapping of the phenyl moiety of each compound was predicted to form a π­cation interaction with residue Arg76, whereas the hydrophobic feature represented by the ethyl moiety exhibited hydrophobic contacts with residue Glu74. Finally, the hydrophobic substituents in the meta­position of the phenyl ring further contributed to the efficacy of the antiviral activity. These results unravel the structural characteristics that are required for binding of CW­33 to the JEV protease and can be used for potential therapeutic and drug development purposes for JEV.


Asunto(s)
Compuestos de Anilina/farmacología , Antivirales/farmacología , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Furanos/farmacología , Proteínas no Estructurales Virales/metabolismo , Compuestos de Anilina/química , Antivirales/química , Sitios de Unión , Furanos/química , Concentración 50 Inhibidora , Modelos Lineales , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Máquina de Vectores de Soporte
11.
Am J Chin Med ; 47(1): 237-257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612454

RESUMEN

The aim of this study was to investigate the effects of bufalin on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Bufalin is a cardiotonic steroid and a key active ingredient of the Chinese medicine ChanSu. The extracts of Chansu are used for various cancer treatments in China. In the present study, bufalin induced cell morphological changes, decreased total cell viability and induced G2/M phase arrest of cell cycle in NPC-TW 076 cells. Results also indicated that bufalin induced chromatin condensation (cell apoptosis) and DNA damage by DAPI staining and comet assay, respectively. The induced apoptotic cell death was further confirmed by annexin-V/PI staining assay. In addition, bufalin also increased ROS and Ca 2+ production and decreased the levels of ΔΨm . Furthermore, the alterations of ROS, ER stress and apoptosis associated protein expressions were investigated by Western blotting. Results demonstrated that bufalin increased the expressions of ROS associated proteins, including SOD (Cu/Zn), SOD2 (Mn) and GST but decreased that of catalase. Bufalin increased ER stress associated proteins (GRP78, IRE-1 α , IRE-1 ß , caspase-4, ATF-6 α , Calpain 1, and GADD153). Bufalin increased the pro-apoptotic proteins Bax, and apoptotic associated proteins (cytochrome c, caspase-3, -8 and -9, AIF and Endo G) but reduced anti-apoptotic protein Bcl-2 in NPC-TW 076 cells. Furthermore, bufalin elevated the expressions of TRAIL-pathway associated proteins (TRAIL, DR4, DR5, and FADD). Based on these findings, we suggest bufalin induced apoptotic cell death via caspase-dependent, mitochondria-dependent and TRAIL pathways in human nasopharyngeal carcinoma NPC-TW 076 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Bufanólidos/farmacología , Mitocondrias/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Extractos de Tejidos/farmacología , Bufanólidos/química , Bufanólidos/aislamiento & purificación , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Carcinoma Nasofaríngeo/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Extractos de Tejidos/aislamiento & purificación , Células Tumorales Cultivadas
12.
Sci Rep ; 8(1): 16595, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30413749

RESUMEN

Japanese encephalitis virus (JEV) is a member of neurotropic flaviviruses transmitted by mosquito bites, causing severe central nervous system disorders. Current JEV genotype III vaccines have a low protection against genotype I isolates in the risk zone. The lead compound CW-33, ethyl 2-(3',5'-dimethylanilino)-4-oxo-4,5-dihydrofuran-3-carboxylate, demonstrates the antiviral activity against JEV with an IC50 values of 38.5 µM for virus yield reduction (Int J Mol Sci 2016,17: E1386). This study synthesized fourteen CW-33 analogues containing a fluoro atom or one methoxy group at the C-2, C-3, or C-4 of anilino ring, and then evaluated for their antiviral activity and mechanism. Among 6 amalogues, CW-33A (ethyl 2-(2-fluoroanilino)-4-oxo- 4,5-dihydrofuran-3-carboxylate), and CW-33D (ethyl 2-(3-methoxyanilino)-4-oxo- 4,5-dihydrofuran-3-carboxylate exhibited antiviral potentials in viral cytopathic effect (CPE) inhibition. CW-33A significantly suppressed the viral protein expression, genome synthesis and intracellular JEV particle production, showing a higher inhibitory effect on JEV yield than CW-33 and CW-33D. The study demonstrated that a mono-fluoro substitution on at the C-2 anilino ring of CW-33 improved the antiviral activity JEV, revealing the structure-activity relationship for developing novel agents against JEV infection.


Asunto(s)
Compuestos de Anilina/farmacología , Antivirales/farmacología , Efecto Citopatogénico Viral/efectos de los fármacos , Encefalitis Japonesa/tratamiento farmacológico , Furanos/farmacología , Meduloblastoma/tratamiento farmacológico , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos , Compuestos de Anilina/química , Antivirales/química , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/virología , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Encefalitis Japonesa/complicaciones , Encefalitis Japonesa/virología , Furanos/química , Genoma Viral , Genotipo , Humanos , Meduloblastoma/virología , Estructura Molecular
13.
Molecules ; 23(8)2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104528

RESUMEN

Many studies have demonstrated that berberine inhibited the cell migration and invasion in human cancer cell lines. However, the exact molecular mechanism of berberine inhibiting the cell migration and invasion of human melanoma A375.S2 and A375.S2/PLX (PLX4032 induced resistant A375.S2) skin cancer cells remains unknown. In this study, we investigated the anti-metastasis mechanisms of berberine in human melanoma cancer A375.S2 cells and A375.S2/PLX resistant cells in vitro. Berberine at low concentrations (0, 1, 1.5 and 2 µM) induced cell morphological changes and reduced the viable cell number and inhibited the mobility, migration, and invasion of A375.S2 cells that were assayed by wound healing and transwell filter. The gelatin zymography assay showed that berberine slightly inhibited MMP-9 activity in A375.S2 cells. Results from western blotting indicated that berberine inhibited the expression of MMP-1, MMP-13, E-cadherin, N-cadherin, RhoA, ROCK1, SOS-1, GRB2, Ras, p-ERK1/2, p-c-Jun, p-FAK, p-AKT, NF-κB, and uPA after 24 h of treatment, but increased the PKC and PI3K in A375.S2 cells. PLX4032 is an inhibitor of the BRAFV600E mutation and used for the treatment of cancer cells harboring activated BRAF mutations. Berberine decrease cell number and inhibited the cell mobility in the resistant A375.S2 (A375.S2/PLX, PLX4032 generated resistant A375.S2 cells). Based on these observations, we suggest that the potential of berberine as an anti-metastatic agent in melanoma that deserves to be investigated in more detail, including in vivo studies in future.


Asunto(s)
Berberina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Metaloproteinasas de la Matriz/metabolismo , Melanoma/metabolismo , Melanoma/patología , Metástasis de la Neoplasia
14.
Anticancer Res ; 38(7): 3989-3997, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29970522

RESUMEN

BACKGROUND/AIM: Bisdemethoxycurcumin (BDMC) exhibits biological activities including anticancer and anti-metastasis in human cancer cell lines, but there is no available information to show whether BDMC suppresses cell migration and invasion of human cervical cancer cells. MATERIALS AND METHODS: Wound-healing, migration, invasion, zymography, and western blotting assays were used to investigate the effects of BDMC on HeLa cells in vitro. RESULTS: BDMC reduced the total viable cell number in a dose-dependent manner. The wound-healing assay show BDMC suppressed the movement of HeLa cells. Furthermore, the trans-well chamber assays showed that BDMC suppressed the cell migration and invasion. Gelatin zymograph assay showed that BDMC did not inhibit matrix metalloproteinase-2 (MMP-2) and -9 activities in vitro. However, western blotting assay showed that BDMC significantly reduced protein levels of growth factor receptor-bound protein 2 (GRB2), Ras homolog gene family, member A (Rho A), urokinase-type plasminogen activator (uPA), RAS, MMP-2, and N-cadherin but increased those of phosphor-extracellular-signal related kinase (p-ERK1/2), E-cadherin and nuclear factor-ĸB (NF-ĸB) in HeLa cells. Confocal laser microscopy assay was used to further confirm BDMC increased NF-ĸB when compared to controls. CONCLUSION: BDMC may have potential as a novel anti-metastasis agent for the treatment of human cervical cancer.


Asunto(s)
Curcumina/análogos & derivados , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/antagonistas & inhibidores , Neoplasias del Cuello Uterino/patología , Western Blotting , Curcumina/farmacología , Diarilheptanoides , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Femenino , Células HeLa , Humanos , Microscopía Confocal , Invasividad Neoplásica , Metástasis de la Neoplasia
15.
Am J Chin Med ; 46(1): 209-229, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29402127

RESUMEN

Deguelin, a rotenoid, is isolated from a natural plant species, and has biological activities including antitumor function. In the present study, we investigated the effect of deguelin on the cell adhesion, migration and invasion of NCI-H292 human lung cancer cells in vitro. Cell viability was analyzed by using flow cytometer. Cell adhesion was determined by using the cell-matrix adhesion assay. Wound healing assay was used to examine cell migration. Cell migration and invasion were investigated using a Boyden chamber assay. The protein expression was measured by Western blotting and confocal laser microscopy. The electrophoretic mobility shift assay was used to measure NF-[Formula: see text]B p65 binding to DNA.We selected the concentrations of deguelin at 0, 0.5, 1.0, 1.5, 2.0 and 2.5[Formula: see text][Formula: see text]M and we found that those concentrations of deguelin did not induce significant cytotoxic effects on NCI-H292 cells. Thus, we selected those concentrations of deguelin for metastasis assay. We found that deguelin inhibited cell adhesion, migration and invasion in dose-dependent manners that was assayed by wound healing and transwell methods, respectively. Deguelin decreased the expression of MMP-2/-9, SOS 1, Rho A, p-AKT (Thr308), p-ERK1/2, p-p38, p-JNK, NF-[Formula: see text]B (p65) and uPA in NCI-H292 cells. Deguelin suppressed the expression of PI3K, SOS 1, NF-[Formula: see text]B (p65), but did not significantly affect PKC and Ras in the nuclei of NCI-H292 cells that were confirmed by confocal laser microscopy. We suggest that deguelin may be used as a novel anticancer metastasis of lung cancer in the future.


Asunto(s)
Antineoplásicos Fitogénicos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Rotenona/análogos & derivados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica/genética , Rotenona/aislamiento & purificación , Rotenona/farmacología
16.
Oncol Lett ; 14(1): 234-240, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28693159

RESUMEN

Cantharidin (CTD) is a natural toxin in beetles of the Mylabris genus (blister beetle), which has been revealed to induce cell death in various types of human cancer cells. However, to the best of our knowledge, no previous studies have investigated the effect of CTD on the expression of genes and their associated signaling pathways in human bladder carcinoma cells. In the present study, CTD-induced cell morphological changes and apoptosis were observed using phase-contrast microscopy and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, respectively, in TSGH-8301 human bladder carcinoma cells. In addition, a complementary DNA microarray analysis demonstrated that CTD treatment led to a >2-fold upregulation of 269 genes. For example, the DNA damage-associated gene DNA-damage-inducible transcript 3 had a 4.75-fold upregulation. Furthermore, another 286 genes were >2-fold downregulated in response to CTD treatment. Matrix-remodeling associated 5, which is associated with cell migration and invasion, was downregulated 7.98-fold.

17.
Exp Ther Med ; 14(1): 59-64, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28672893

RESUMEN

Rice is a staple food in numerous countries around the world. Anthocyanins found in black rice have been reported to reduce the risk of certain diseases, but the effects of crude extract of anthocyanins from Asia University-selected purple glutinous indica rice (AUPGA) on immune responses have not yet been demonstrated. The current study aimed to investigate whether AUPGA treatment could affect immune responses in murine leukemia cells in vivo. Murine acute myelomonocytic leukemia WEHI-3 cells were intraperitoneally injected into normal BALB/c mice to generate leukemia mice. A total of 50 mice were randomly divided into five groups (n=10 in each group) and were fed a diet supplemented with AUPGA at 0, 20, 50 or 100 mg/kg for three weeks. All mice were weighed and the blood, liver and spleen were collected for further experiments. The results indicated that AUPGA did not significantly affect animal body weight, but significantly increased spleen weight (P<0.05) and decreased liver weight (P<0.05) when compared with the control group. AUPGA significantly increased the T cell (CD3) population at treatments of 20 and 100 mg/kg (P<0.05). However, it only significantly increased the B cell (CD19) population at a treatment of 20 mg/kg (P<0.05). Furthermore, AUPGA at 50 and 100 mg/kg significantly increased the monocyte (CD11b) population and the level of macrophages (Mac-3; P<0.05 for both). AUPGA at 50 and 100 mg/kg significantly promoted macrophage phagocytosis in peripheral blood mononuclear cells (P<0.05), and all doses of AUPGA treatment significantly promoted macrophage phagocytotic activity in the peritoneum (P<0.05). AUPGA treatment significantly decreased natural killer cell activity from splenocytes (P<0.05). Finally, AUPGA treatment at 20 mg/kg treatment significantly promoted T cell proliferation (P<0.05), and treatment at 50 and 100 mg/kg significantly decreased B cell proliferation compared with the control group (P<0.05).

18.
Environ Toxicol ; 32(1): 329-343, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26822499

RESUMEN

Tetrandrine, a bisbenzylisoquinoline alkaloid, is extracted from the root of the Chinese herb Radix Stephania tetrandra S Moore. This compound has antitumor activity in different cancer cell types. In this study, the effects of tetrandrine on human oral cancer CAL 27 cells were examined. Results indicated that tetrandrine induced cytotoxic activity in CAL 27 cells. Effects were due to cell death by the induction of apoptosis and accompany with autophagy and these effects were concentration- and time-dependent manners. Tetrandrine induced apoptosis was accompanied by alterations in cell morphology, chromatin fragmentation, and caspase activation in CAL 27 cells. Tetrandrine treatment also induced intracellular accumulation of reactive oxygen species (ROS). The generation of ROS may play an important role in tetrandrine-induced apoptosis. Tetrandrine triggered LC3B expression and induced autophagy in CAL 27 cells. Tetrandrine induced apoptosis and autophagy were significantly attenuated by N-acetylcysteine pretreatment that supports the involvement of ROS production. Tetrandrine induced cell death may act through caspase-dependent apoptosis with Beclin-1-induced autophagy in human oral cancer cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 329-343, 2017.


Asunto(s)
Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Bencilisoquinolinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Calcio/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología
19.
J Ethnopharmacol ; 194: 1043-1050, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27833027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bufalin, a component of Chan Su (frog), has been shown to have biological activities including anti-tumor effects. Gefitinib has been used as an anti-cancer drug in lung cancer patients; however, some patients eventually become gefitinib resistant. AIM OF THE STUDY: In this study, we investigated anti-metastasis effects of bufalin in gefitinib resistant NCI-H460 lung cancer cells. MATERIALS AND METHODS: The effects of the bufalin in gefitinib resistant NCI-H460 lung cancer cells were investigated on cell viability using flow cytometry. The adhesion capacity, wound healing assay, invasion and migration assay, and Western blot analysis were used to understand the molecular mechanisms in this study RESULTS: Under sub-lethal concentrations (from 2.5 up to 10nM), bufalin significantly inhibits cell adhension, migration and invasion nature of gefitinib resistant H460 cells. Western blotting assay revealed that bufalin depressed some of the key metastasis-related proteins, such as SOS-1, MMP-2 and Rho A underwent significant reduction. Phosphorylated Focal adhesion kinase (p-FAK), phosphorylated extracellular signal-regulated kinase (p-ERK1/2), Ras and E-cadherin were significantly reduced at 48h treatment. However, phosphorylated p38 (p-p38), phosphorylated c-Jun NH2-terminal kinase (p-JNK1/2) and NF-κBp65 were increased. CONCLUSIONS: Based on these observations, we suggest that bufalin can be used in anti-metastasis of gefitinib resistant NCI-H460 lung cancer cells in the future.


Asunto(s)
Bufanólidos/farmacología , Movimiento Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Invasividad Neoplásica/patología , Quinazolinas/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gefitinib , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína SOS1/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
20.
Int J Mol Sci ; 17(9)2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27563890

RESUMEN

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 µM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 µM, respectively. CW-33 significantly moderated JEV-triggered Ca(2+) overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents.


Asunto(s)
Antivirales/farmacología , Calcio/metabolismo , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Animales , Antivirales/química , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Cricetinae , Proteínas Activadoras de GTPasa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mesocricetus , Quinolinas/química , Quinolinas/farmacología , Factor de Transcripción STAT1/metabolismo , Espectrometría de Masas en Tándem , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA