Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 584(7821): 410-414, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641833

RESUMEN

In metazoans, the secreted proteome participates in intercellular signalling and innate immunity, and builds the extracellular matrix scaffold around cells. Compared with the relatively constant intracellular environment, conditions for proteins in the extracellular space are harsher, and low concentrations of ATP prevent the activity of intracellular components of the protein quality-control machinery. Until now, only a few bona fide extracellular chaperones and proteases have been shown to limit the aggregation of extracellular proteins1-5. Here we performed a systematic analysis of the extracellular proteostasis network in Caenorhabditis elegans with an RNA interference screen that targets genes that encode the secreted proteome. We discovered 57 regulators of extracellular protein aggregation, including several proteins related to innate immunity. Because intracellular proteostasis is upregulated in response to pathogens6-9, we investigated whether pathogens also stimulate extracellular proteostasis. Using a pore-forming toxin to mimic a pathogenic attack, we found that C. elegans responded by increasing the expression of components of extracellular proteostasis and by limiting aggregation of extracellular proteins. The activation of extracellular proteostasis was dependent on stress-activated MAP kinase signalling. Notably, the overexpression of components of extracellular proteostasis delayed ageing and rendered worms resistant to intoxication. We propose that enhanced extracellular proteostasis contributes to systemic host defence by maintaining a functional secreted proteome and avoiding proteotoxicity.


Asunto(s)
Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Espacio Extracelular/metabolismo , Agregado de Proteínas , Proteostasis , Envejecimiento/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Sistema de Señalización de MAP Quinasas , Agregación Patológica de Proteínas/prevención & control , Proteoma/genética , Proteoma/metabolismo , Interferencia de ARN
2.
Elife ; 82019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31050339

RESUMEN

Reduced protein homeostasis leading to increased protein instability is a common molecular feature of aging, but it remains unclear whether this is a cause or consequence of the aging process. In neurodegenerative diseases and other amyloidoses, specific proteins self-assemble into amyloid fibrils and accumulate as pathological aggregates in different tissues. More recently, widespread protein aggregation has been described during normal aging. Until now, an extensive characterization of the nature of age-dependent protein aggregation has been lacking. Here, we show that age-dependent aggregates are rapidly formed by newly synthesized proteins and have an amyloid-like structure resembling that of protein aggregates observed in disease. We then demonstrate that age-dependent protein aggregation accelerates the functional decline of different tissues in C. elegans. Together, these findings imply that amyloid-like aggregates contribute to the aging process and therefore could be important targets for strategies designed to maintain physiological functions in the late stages of life.


Asunto(s)
Envejecimiento , Amiloide/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Agregado de Proteínas , Animales
3.
J Vis Exp ; (129)2017 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-29286457

RESUMEN

In the last decades, the prevalence of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), has grown. These age-associated disorders are characterized by the appearance of protein aggregates with fibrillary structure in the brains of these patients. Exactly why normally soluble proteins undergo an aggregation process remains poorly understood. The discovery that protein aggregation is not limited to disease processes and instead part of the normal aging process enables the study of the molecular and cellular mechanisms that regulate protein aggregation, without using ectopically expressed human disease-associated proteins. Here we describe methodologies to examine inherent protein aggregation in Caenorhabditis elegans through complementary approaches. First, we examine how to grow large numbers of age-synchronized C. elegans to obtain aged animals and we present the biochemical procedures to isolate highly-insoluble-large aggregates. In combination with a targeted genetic knockdown, it is possible to dissect the role of a gene of interest in promoting or preventing age-dependent protein aggregation by using either a comprehensive analysis with quantitative mass spectrometry or a candidate-based analysis with antibodies. These findings are then confirmed by in vivo analysis with transgenic animals expressing fluorescent-tagged aggregation-prone proteins. These methods should help clarify why certain proteins are prone to aggregate with age and ultimately how to keep these proteins fully functional.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Edad , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Modelos Animales , Agregado de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Front Aging Neurosci ; 9: 138, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567012

RESUMEN

Aging is the most important risk factor for neurodegenerative diseases associated with pathological protein aggregation such as Alzheimer's disease. Although aging is an important player, it remains unknown which molecular changes are relevant for disease initiation. Recently, it has become apparent that widespread protein aggregation is a common feature of aging. Indeed, several studies demonstrate that 100s of proteins become highly insoluble with age, in the absence of obvious disease processes. Yet it remains unclear how these misfolded proteins aggregating with age affect neurodegenerative diseases. Importantly, several of these aggregation-prone proteins are found as minor components in disease-associated hallmark aggregates such as amyloid-ß plaques or neurofibrillary tangles. This co-localization raises the possibility that age-dependent protein aggregation directly contributes to pathological aggregation. Here, we show for the first time that highly insoluble proteins from aged Caenorhabditis elegans or aged mouse brains, but not from young individuals, can initiate amyloid-ß aggregation in vitro. We tested the seeding potential at four different ages across the adult lifespan of C. elegans. Significantly, protein aggregates formed during the early stages of aging did not act as seeds for amyloid-ß aggregation. Instead, we found that changes in protein aggregation occurring during middle-age initiated amyloid-ß aggregation. Mass spectrometry analysis revealed several late-aggregating proteins that were previously identified as minor components of amyloid-ß plaques and neurofibrillary tangles such as 14-3-3, Ubiquitin-like modifier-activating enzyme 1 and Lamin A/C, highlighting these as strong candidates for cross-seeding. Overall, we demonstrate that widespread protein misfolding and aggregation with age could be critical for the initiation of pathogenesis, and thus should be targeted by therapeutic strategies to alleviate neurodegenerative diseases.

5.
Dev Biol ; 411(2): 159-171, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26879760

RESUMEN

The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo.


Asunto(s)
Cadherinas/fisiología , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/embriología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Cadherinas/genética , Adhesión Celular , Movimiento Celular , Citoplasma/metabolismo , Transición Epitelial-Mesenquimal , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Microscopía Fluorescente , Mutación , Proteínas de Xenopus/genética
6.
Integr Biol (Camb) ; 7(3): 356-63, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25710133

RESUMEN

AFM-based force spectroscopy in combination with optical microscopy is a powerful tool for investigating cell mechanics and adhesion on the single cell level. However, standard setups featuring an AFM mounted on an inverted light microscope only provide a bottom view of cell and AFM cantilever but cannot visualize vertical cell shape changes, for instance occurring during motile membrane blebbing. Here, we have integrated a mirror-based sideview system to monitor cell shape changes resulting from motile bleb behavior of Xenopus cranial neural crest (CNC) cells during AFM elasticity and adhesion measurements. Using the sideview setup, we quantitatively investigate mechanical changes associated with bleb formation and compared cell elasticity values recorded during membrane bleb and non-bleb events. Bleb protrusions displayed significantly lower stiffness compared to the non-blebbing membrane in the same cell. Bleb stiffness values were comparable to values obtained from blebbistatin-treated cells, consistent with the absence of a functional actomyosin network in bleb protrusions. Furthermore, we show that membrane blebs forming within the cell-cell contact zone have a detrimental effect on cell-cell adhesion forces, suggesting that mechanical changes associated with bleb protrusions promote cell-cell detachment or prevent adhesion reinforcement. Incorporating a sideview setup into an AFM platform therefore provides a new tool to correlate changes in cell morphology with results from force spectroscopy experiments.


Asunto(s)
Extensiones de la Superficie Celular/fisiología , Extensiones de la Superficie Celular/ultraestructura , Fluidez de la Membrana/fisiología , Microscopía de Fuerza Atómica/instrumentación , Cresta Neural/fisiología , Cresta Neural/ultraestructura , Animales , Adhesión Celular/fisiología , Células Cultivadas , Módulo de Elasticidad/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Dureza/fisiología , Micromanipulación/instrumentación , Micromanipulación/métodos , Microscopía de Fuerza Atómica/métodos , Estrés Mecánico , Xenopus laevis
7.
Genesis ; 52(2): 120-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24339193

RESUMEN

Protocadherins represent the biggest subgroup within the cadherin superfamily of transmembrane glycoproteins. In contrast to classical type I cadherins, protocadherins in general exhibit only moderate adhesive activity. During embryogenesis, they are involved in cell signaling and regulate diverse morphogenetic processes, including morphogenetic movements during gastrulation and neural crest migration. The two protocadherins paraxial protocadherin (PAPC) and axial protocadherin (AXPC) are indispensable for proper gastrulation movements in Xenopus and zebrafish. The closest relative PCNS instead, is required for neural crest and somite formation. Here, we show that cranial neural crest (CNC) cells in addition to PCNS express PAPC, but not AXPC. Overexpression of PAPC resulted in comparable migration defects as knockdown of PCNS. Moreover, reconstitution experiments revealed that PAPC is able to replace PCNS in CNC cells, indicating that both protocadherins can regulate CNC migration.


Asunto(s)
Cadherinas/metabolismo , Cresta Neural/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Región Branquial/fisiología , Cadherinas/genética , Movimiento Celular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Precursores de Proteínas/genética , Protocadherinas , Xenopus/metabolismo , Proteínas de Xenopus/genética
8.
Arch Biochem Biophys ; 524(1): 30-42, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22387375

RESUMEN

Dynamically regulated cell-cell adhesion is crucial for morphogenesis during embryonic development and tumor progression. The cadherins as calcium-dependent cell-cell adhesion proteins represent key molecules in these tissue movements. How cadherins serve in maintaining tissue cohesion during migration, facilitate cell-cell communication and promote signaling will be summarized in this review.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Animales , Cadherinas/química , Comunicación Celular , Desarrollo Embrionario , Gastrulación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...