Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
ACS Synth Biol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819403

RESUMEN

Cas12a is a widely used programmable nuclease for genome editing across a variety of organisms, but its application is limited by its PAM recognition restriction. To alleviate these PAM constraints, protein engineering efforts have been applied to expand the PAM recognition range. In this study, we designed and constructed 990 synthetic hybrid Cas12a chimeras through domain shuffling and screened an efficient hybrid Cas12a (ehCas12a) that could recognize a broad range PAM of 5'-TYYN-3' (Y is T or C and N is A, T, C, or G). Furthermore, we constructed an ehCas12a variant, ehCas12a RRVR (T167R/N572R/K578V/N582R), with expanded PAM preference to 5'-TNYN, TWRV-3' (W is A or T, R is A or G, and V is A, C, or G), which can efficiently recognize -2* A/G PAMs that are barely recognized by Cas12a-type proteins and their mutants. Finally, we demonstrated that the DNase-inactivated ehCas12a RRVR base editor (dehCas12a RRVR-BE) was capable of targeting noncanonical PAMs in vivo and disease-related loci for potential therapeutic applications. Overall, our findings highlight the modular design and reconfiguration of Cas proteins for enhanced functionality.

2.
J Med Virol ; 96(4): e29579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572923

RESUMEN

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) primarily targets the respiratory system. Physiologically relevant human lung models are indispensable to investigate virus-induced host response and disease pathogenesis. In this study, we generated human induced pluripotent stem cell (iPSC)-derived alveolar organoids (AOs) using an established protocol that recapitulates the sequential steps of in vivo lung development. AOs express alveolar epithelial type II cell protein markers including pro-surfactant protein C and ATP binding cassette subfamily A member 3. Compared to primary human alveolar type II cells, AOs expressed higher mRNA levels of SARS-CoV-2 entry factors, angiotensin-converting enzyme 2 (ACE2), asialoglycoprotein receptor 1 (ASGR1) and basigin (CD147). Considering the localization of ACE2 on the apical side in AOs, we used three AO models, apical-in, sheared and apical-out for SARS-CoV-2 infection. All three models of AOs were robustly infected with the SARS-CoV-2 irrespective of ACE2 accessibility. Antibody blocking experiment revealed that ASGR1 was the main receptor for SARS-CoV2 entry from the basolateral in apical-in AOs. AOs supported the replication of SARS-CoV-2 variants WA1, Alpha, Beta, Delta, and Zeta and Omicron to a variable degree with WA1 being the highest and Omicron being the least. Transcriptomic profiling of infected AOs revealed the induction of inflammatory and interferon-related pathways with NF-κB signaling being the predominant host response. In summary, iPSC-derived AOs can serve as excellent human lung models to investigate infection of SARS-CoV-2 variants and host responses from both apical and basolateral sides.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , ARN Viral , Pulmón , Organoides , Receptor de Asialoglicoproteína
3.
Respir Res ; 25(1): 77, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321530

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , ARN Circular , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Biomarcadores
4.
Appl Opt ; 63(1): 204-209, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175022

RESUMEN

The generation of an X-band dual-chirp waveform, which is capable of pulse compression, plays an important role in radar, electric warfare, and satellite communication systems. With the development of applications such as multi-static radar, transmission over long distances has attracted considerable attention. In this paper, a photonic system for X-band dual-chirp waveform generation and transmission based on frequency multiplication and power-fading compensation is put forward and experimentally carried out. Based on a compact dual-parallel Mach-Zehnder modulator (DPMZM), the dual-chirp waveforms of 8.6-9.6 GHz and 9.6-10.6 GHz are generated by an RF carrier of 4.8 GHz and transmitted through a 40 km single-mode fiber (SMF) spool. The dispersion-induced power fading of the chirp waveform is compensated for by about 13 dB. The full width at half maximum (FWHM) and the peak-to-sidelobe ratio (PSR) of the compressed pulses are 1 ns and 11.5 dB, respectively. Moreover, the compensation of power fading in the entire X-band is verified to demonstrate the applicability of our system. By flexibly adjusting the bias voltage of the built-in phase shifter, the system can be applied in more scenarios.

5.
Analyst ; 149(5): 1447-1454, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38197456

RESUMEN

Ventilator-associated pneumonia (VAP) is a prevalent disease caused by microbial infection, resulting in significant morbidity and mortality within the intensive care unit (ICU). The rapid and accurate identification of pathogenic bacteria causing VAP can assist clinicians in formulating timely treatment plans. In this study, we attempted to differentiate bacterial species in VAP by utilizing the volatile organic compounds (VOCs) released by pathogens. We cultured 6 common bacteria in VAP in vitro, including Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Staphylococcus aureus, which covered most cases of VAP infection in clinic. After the VOCs released by bacteria were collected in sampling bags, they were quantitatively detected by a proton transfer reaction-mass spectrometry (PTR-MS), and the characteristic ions were qualitatively analyzed through a fast gas chromatography-proton transfer reaction-mass spectrometry (FGC-PTR-MS). After conducting principal component analysis (PCA) and analysis of similarities (ANOSIM), we discovered that the VOCs released by 6 bacteria exhibited differentiation following 3 h of quantitative cultivation in vitro. Additionally, we further investigated the variations in the types and concentrations of bacterial VOCs. The results showed that by utilizing the differences in types of VOCs, 6 bacteria could be classified into 5 sets, except for A. baumannii and E. cloacae which were indistinguishable. Furthermore, we observed significant variations in the concentration ratio of acetaldehyde and methyl mercaptan released by A. baumannii and E. cloacae. In conclusion, the VOCs released by bacteria could effectively differentiate the 6 pathogens commonly associated with VAP, which was expected to assist doctors in formulating treatment plans in time and improve the survival rate of patients.


Asunto(s)
Neumonía Asociada al Ventilador , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Protones , Neumonía Asociada al Ventilador/diagnóstico , Neumonía Asociada al Ventilador/microbiología , Espectrometría de Masas/métodos , Bacterias
6.
Luminescence ; 39(1): e4620, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933617

RESUMEN

Rapid and accurate identification of tumor metabolic markers is important for early tumor diagnosis and individualized treatment. Here, a stable monodisperse sub-nanometer platinum (Pt) material was developed as a highly efficient nanozyme with a specific activity of peroxidase as high as 20.86 U mg-1 through the growth of in situ domain-limited Pt quantum dots via the polymer polyvinylpyrrolidone. Further, the synthesis of large quantities of Pt-loaded SiO2 (Pt-SiO2 ) was determined by silylation reaction and used for naked eye colorimetric testing of human alpha-fetoprotein (AFP). In particular, the immunization incubation process occurred in preprepared microplates. A nanozyme-based immunomodel was constructed in the presence of the target AFP, and a chromogenic reaction occurred with exogenous hydrogen peroxide and the chromogenic substrate tetramethylbenzidine. On optimization of experimental conditions, the dynamic working response range for AFP was found to be 0.05-20 ng mL-1 , with a limit of detection of 38.7 pg mL-1 . This work provides a new strategy to design efficient nanozyme-based enzyme-linked immunochromatographic platforms to meet the practical use of replacing natural enzymes.


Asunto(s)
Inmunoadsorbentes , Neoplasias , Humanos , Platino (Metal)/química , alfa-Fetoproteínas , Dióxido de Silicio/química , Peroxidasa , Ensayo de Inmunoadsorción Enzimática , Peróxido de Hidrógeno/química , Colorimetría/métodos
7.
Chin Med J (Engl) ; 137(4): 431-440, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37690994

RESUMEN

BACKGROUND: Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS: We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS: The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION: The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION: No. NCT00454519 ( https://clinicaltrials.gov/ ).


Asunto(s)
Neoplasias Colorrectales , Polimorfismo de Nucleótido Simple , Humanos , Pronóstico , Genotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo , Microambiente Tumoral , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Antígenos de Histocompatibilidad Menor/genética
8.
Appl Opt ; 62(31): 8224-8228, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037923

RESUMEN

In this paper, we present a novel, to the best of our knowledge, photonic scheme for the generation of dual-mode multi-format chirp microwave signals, utilizing a dual-drive dual-parallel Mach-Zehnder modulator (DD-DPMZM). By inputting a single-chirp signal and controlling the input binary sequences, the proposed method can generate up-, down-, dual-, or triangular-chirp signals in both pulse and continuous-wave modes. Moreover, the duty cycle of the generated chirp signals in the pulse mode can be easily adjusted by manipulating the injected binary sequences. The compact structure of the proposed scheme eliminates the need for polarization control in signal switching and avoids the use of any optical filter. Experimental verification confirms the feasibility of our approach, while also pointing towards its promising applications in multi-functional radar systems.

9.
BMC Med Genomics ; 16(1): 265, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37885006

RESUMEN

OBJECTIVE: The impact of inflammatory response on tumor development and therapeutic response is of significant importance in clear cell renal cell carcinoma (ccRCC). The customization of specialized prognostication approaches and the exploration of supplementary treatment options hold critical clinical implications in relation to the inflammatory response. METHODS: In the present study, unsupervised clustering was implemented on TCGA-KIRC tumors using transcriptome profiles of inflammatory response genes, which was then validated in two ccRCC datasets (E-MATB-1980 and ICGC) and two immunotherapy datasets (IMvigor210 and Liu et al.) via SubMap and NTP algorithms. Combining co-expression and LASSO analyses, inflammatory response-based scoring system was defined, which was evaluated in pan-cancer. RESULTS: Three reproducible inflammatory response subtypes (named IR1, IR2 and IR3) were determined and independently verified, each exhibiting distinct molecular, clinical, and immunological characteristics. Among these subtypes, IR2 had the best OS outcomes, followed by IR3 and IR1. In terms of anti-angiogenic agents, sunitinib may be appropriate for IR1 patients, while axitinib and pazopanib may be suitable for IR2 patients, and sorafenib for IR3 patients. Additionally, IR1 patients might benefit from anti-CTLA4 therapy. A scoring system called IRscore was defined for individual ccRCC patients. Patients with high IRscore presented a lower response rate to anti-PD-L1 therapy and worse prognostic outcomes. Pan-cancer analysis demonstrated the immunological features and prognostic relevance of the IRscore. CONCLUSION: Altogether, characterization of inflammatory response subtypes and IRscore provides a roadmap for patient risk stratification and personalized treatment decisions, not only in ccRCC, but also in pan-cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/terapia , Neoplasias Renales/tratamiento farmacológico , Medicina de Precisión , Sorafenib/uso terapéutico , Axitinib/uso terapéutico , Pronóstico
10.
EMBO Rep ; 24(11): e56850, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37846507

RESUMEN

The remodeling and stiffening of the extracellular matrix (ECM) is a well-recognized modulator of breast cancer progression. How changes in the mechanical properties of the ECM are converted into biochemical signals that direct tumor cell migration and metastasis remain poorly characterized. Here, we describe a new role for the autophagy-inducing serine/threonine kinases ULK1 and ULK2 in mechanotransduction. We show that ULK1/2 activity inhibits the assembly of actin stress fibers and focal adhesions (FAs) and as a consequence impedes cell contraction and migration, independent of its role in autophagy. Mechanistically, we identify PXN/paxillin, a key component of the mechanotransducing machinery, as a direct binding partner and substrate of ULK1/2. ULK-mediated phosphorylation of PXN at S32 and S119 weakens homotypic interactions and liquid-liquid phase separation of PXN, impairing FA assembly, which in turn alters the mechanical properties of breast cancer cells and their response to mechanical stimuli. ULK1/2 and the well-characterized PXN regulator, FAK/Src, have opposing functions on mechanotransduction and compete for phosphorylation of adjacent serine and tyrosine residues. Taken together, our study reveals ULK1/2 as important regulator of PXN-dependent mechanotransduction.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Paxillin/metabolismo , Mecanotransducción Celular , Fosforilación , Movimiento Celular , Serina/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
11.
Cancer Res ; 83(21): 3650-3666, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37669142

RESUMEN

Alternative polyadenylation (APA) is emerging as a major mechanism of posttranscriptional regulation. APA can impact the development and progression of cancer, suggesting that the genetic determinants of APA might play an important role in regulating cancer risk. Here, we depicted a pan-cancer atlas of human APA quantitative trait loci (apaQTL), containing approximately 0.7 million apaQTLs across 32 cancer types. Systematic multiomics analyses indicated that cancer apaQTLs could contribute to APA regulation by altering poly(A) motifs, RNA-binding proteins (RBP), and chromatin regulatory elements and were preferentially enriched in genome-wide association studies (GWAS)-identified cancer susceptibility loci. Moreover, apaQTL-related genes (aGene) were broadly related to cancer signaling pathways, high mutational burden, immune infiltration, and drug response, implicating their potential as therapeutic targets. Furthermore, apaQTLs were mapped in Chinese colorectal cancer tumor tissues and then screened for functional apaQTLs associated with colorectal cancer risk in 17,789 cases and 19,951 controls using GWAS-ChIP data, with independent validation in a large-scale population consisting of 6,024 cases and 10,022 controls. A multi-ancestry-associated apaQTL variant rs1020670 with a C>G change in DNM1L was identified, and the G allele contributed to an increased risk of colorectal cancer. Mechanistically, the risk variant promoted aberrant APA and facilitated higher usage of DNM1L proximal poly(A) sites mediated by the RBP CSTF2T, which led to higher expression of DNM1L with a short 3'UTR. This stabilized DNM1L to upregulate its expression, provoking colorectal cancer cell proliferation. Collectively, these findings generate a resource for understanding APA regulation and the genetic basis of human cancers, providing insights into cancer etiology. SIGNIFICANCE: Cancer risk is mediated by alternative polyadenylation quantitative trait loci, including the rs1020670-G variant that promotes alternative polyadenylation of DNM1L and increases colorectal cancer risk.


Asunto(s)
Neoplasias Colorrectales , Estudio de Asociación del Genoma Completo , Humanos , Poliadenilación/genética , Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Neoplasias Colorrectales/genética , Regiones no Traducidas 3'/genética
12.
J Nutr Biochem ; 122: 109437, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37666478

RESUMEN

Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.


Asunto(s)
Aminoácidos de Cadena Ramificada , Obesidad , Ratones , Animales , NADP , Aminoácidos de Cadena Ramificada/metabolismo , Obesidad/metabolismo , Ciclo Celular , Adipogénesis , ARN Mensajero/metabolismo , Células 3T3-L1 , Dieta Alta en Grasa/efectos adversos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
13.
Nat Commun ; 14(1): 5958, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749132

RESUMEN

Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias , Humanos , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Mapeo Cromosómico , Alelos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Elementos de Facilitación Genéticos/genética , Neoplasias/genética , Proteínas del Citoesqueleto/genética , Proteínas de Unión al ARN/genética
14.
J Innate Immun ; 15(1): 647-664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37607510

RESUMEN

An unstable influenza genome leads to the virus resistance to antiviral drugs that target viral proteins. Thus, identification of host factors essential for virus replication may pave the way to develop novel antiviral therapies. In this study, we investigated the roles of the poly(ADP-ribose) polymerase enzyme, tankyrase 1 (TNKS1), and the endogenous small noncoding RNA, miR-9-1, in influenza A virus (IAV) infection. Increased expression of TNKS1 was observed in IAV-infected human lung epithelial cells and mouse lungs. TNKS1 knockdown by RNA interference repressed influenza viral replication. A screen using TNKS1 3'-untranslation region (3'-UTR) reporter assays and predicted microRNAs identified that miR-9-1 targeted TNKS1. Overexpression of miR-9-1 reduced influenza viral replication in lung epithelial cells as measured by viral mRNA and protein levels as well as virus production. miR-9-1 induced type I interferon production and enhanced the phosphorylation of STAT1 in cell culture. The ectopic expression of miR-9-1 in the lungs of mice by using an adenoviral viral vector enhanced type I interferon response, inhibited viral replication, and reduced susceptibility to IAV infection. Our results indicate that miR-9-1 is an anti-influenza microRNA that targets TNKS1 and enhances cellular antiviral state.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Interferón Tipo I , MicroARNs , Tanquirasas , Animales , Humanos , Ratones , Antivirales/farmacología , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Gripe Humana/genética , MicroARNs/genética , Tanquirasas/genética , Replicación Viral
15.
Genes Dis ; 10(6): 2351-2365, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37554175

RESUMEN

Obesity has become a major health crisis in the past ∼50 years. The fat mass and obesity-associated (FTO) gene, identified by genome-wide association studies (GWAS), was first reported to be positively associated with obesity in humans. Mice with more copies of the FTO gene were observed to be obese, while loss of the gene in mice was found to protect from obesity. Later, FTO was found to encode an m6A RNA demethylase and has a profound effect on many biological and metabolic processes. In this review, we first summarize recent studies that demonstrate the critical roles and regulatory mechanisms of FTO in obesity and metabolic disease. Second, we discuss the ongoing debates concerning the association between FTO polymorphisms and obesity. Third, since several small molecule drugs and micronutrients have been found to regulate metabolic homeostasis through controlling the expression or activity of FTO, we highlight the broad potential of targeting FTO for obesity treatment. Improving our understanding of FTO and the underlying mechanisms may provide new approaches for treating obesity and metabolic diseases.

16.
Gastroenterology ; 165(5): 1151-1167, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541527

RESUMEN

BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.

17.
Viruses ; 15(7)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37515100

RESUMEN

Influenza A virus (IAV) is an eight-segment negative-sense RNA virus and is subjected to gene recombination between strains to form novel strains, which may lead to influenza pandemics. Seasonal influenza occurs annually and causes great losses in public healthcare. In this study, we examined the role of interferon-induced protein with tetratricopeptide repeats 1 and 2 (IFIT1 and IFIT2) in influenza virus infection. Knockdown of IFIT1 or IFIT2 using a lentiviral shRNA increased viral nucleoprotein (NP) and nonstructural protein 1 (NS1) protein levels, as well as progeny virus production in A/Puerto Rico/8/34 H1N1 (PR/8)-infected lung epithelial A549 cells. Overexpression of IFIT1 or IFIT2 reduced viral NP and NS1 RNA and protein levels in PR/8-infected HEK293 cells. Overexpression of IFIT1 or IFIT2 also inhibited influenza virus infection of various H1N1 strains, including PR/8, A/WSN/1933, A/California/07/2009 and A/Oklahoma/3052/2009, as determined by a viral reporter luciferase assay. Furthermore, knockdown of IFIT1 or IFIT2 increased while overexpression of IFIT1 or IFIT2 decreased viral RNA, complementary RNA, and mRNA levels of NP and NS1, as well as viral polymerase activities. Taken together, our results support that both IFIT1 and -2 have anti-influenza virus activities by inhibiting viral RNA synthesis.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Interferones , Subtipo H1N1 del Virus de la Influenza A/genética , ARN Viral/genética , Células HEK293 , Repeticiones de Tetratricopéptidos , Proteínas de Unión al ARN/genética , Gripe Humana/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
18.
Anal Chem ; 95(30): 11375-11382, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392185

RESUMEN

The investigation of volatile organic compounds (VOCs) in human metabolites has been a topic of interest as it holds the potential for the development of non-invasive technologies to screen for organ lesions in vivo. However, it remains unclear whether VOCs differ among healthy organs. Consequently, a study was conducted to analyze VOCs in ex vivo organ tissues obtained from 16 Wistar rats, comprising 12 different organs. The VOCs released from each organ tissue were detected by the headspace-solid phase microextraction-gas chromatography-mass spectrometry technique. In the untargeted analysis of 147 chromatographic peaks, the differential volatiles of rat organs were explored based on the Mann-Whitney U test and fold change (FC > 2.0) compared with other organs. It was found that there were differential VOCs in seven organs. A discussion on the possible metabolic pathways and related biomarkers of organ differential VOCs was conducted. Based on the orthogonal partial least squares discriminant analysis and receiver operating characteristic curve, we found that differential VOCs in the liver, cecum, spleen, and kidney can be used as the unique identification of the corresponding organ. In this study, differential VOCs of organs in rats were systematically reported for the first time. Profiles of VOCs produced by healthy organs can serve as a reference or baseline that may indicate the presence of disease or abnormalities in the organ's function. Differential VOCs can be used as the fingerprint of organs, and future integration with metabolic research may contribute to the development of healthcare.

19.
Am J Physiol Cell Physiol ; 325(2): C420-C428, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399496

RESUMEN

MicroRNAs (miRNAs) regulate gene expression posttranscriptionally and are implicated in viral replication and host tropism. miRNAs can impact the viruses either by directly interacting with the viral genome or modulating host factors. Although many miRNAs have predicted binding sites in the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA genome, little experimental validation has been done. We first identified 492 miRNAs that have binding site(s) on the spike (S) viral RNA by a bioinformatics prediction. We then validated the selected 39 miRNAs by examining S-protein levels after coexpressing the S-protein and a miRNA into the cells. Seven miRNAs were found to reduce the S-protein levels by more than 50%. Among them, miR-15a, miR-153, miR-298, miR-508, miR-1909, and miR-3130 also significantly reduced SARS-CoV-2 viral replication. SARS-CoV-2 infection decreased the expression levels of miR-298, miR-497, miR-508, miR-1909, and miR-3130, but had no significant effects on miR-15a and miR-153 levels. Intriguingly, the targeting sequences of these miRNAs on the S viral RNA showed sequence conservation among the variants of concern. Our results suggest that these miRNAs elicit effective antiviral defense against SARS-CoV-2 by modulating S-protein expression and are likely targeting all the variants. Thus, the data signify the therapeutic potential of miRNA-based therapy for SARS-CoV-2 infections.NEW & NOTEWORTHY MicroRNAs can impact viruses either by directly interacting with the virus genome or by modulating host factors. We identified that cellular miRNAs regulate effective antiviral defense against SARS-CoV-2 via modulating spike protein expression, which may offer a potential candidate for antiviral therapy.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , SARS-CoV-2/genética , COVID-19/genética , Replicación Viral/genética , ARN Viral/genética , Antivirales
20.
Ecotoxicol Environ Saf ; 261: 115093, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37270882

RESUMEN

Polychlorinated biphenyls (PCBs) are a type of persistent organic pollutant (POP). Our previous study demonstrated that exposure to 0.5-50 µg/kg bw PCB138 during postnatal days (PND) 3-21 led to elevated serum uric acid (UA) levels and kidney injury in adult male mice. Given that the prevalence of hyperuricemia (HUA) is significantly lower in women than in men, it is worth investigating whether POP-induced HUA and its secondary kidney injury have sexual dimorphism. Herein, we exposed female mice to 0.5-50 µg/kg bw PCB138 during PND 3-21, resulting in elevated serum UA levels, but without causing significant kidney damage. Concurrently, we found a negative correlation between serum 17ß-estradiol (E2) and serum UA levels. We also observed down-regulation of estrogen receptor (ER) protein levels in the kidneys of the PCB138-exposed groups. Furthermore, our study showed that E2 rescued the increased UA level and cytotoxicity caused by HUA in human renal tubular epithelial (HK-2) cells. Collectively, our findings suggest that E2 likely plays a crucial protective role in PCB138-induced HUA and kidney injury in female mice. Our research highlights the existence of sexual dimorphism in kidney injury secondary to HUA induced by POPs, which could provide guidance for individuals of different genders in preventing kidney injury caused by environmental factors.


Asunto(s)
Hiperuricemia , Enfermedades Renales , Adulto , Humanos , Masculino , Femenino , Ratones , Animales , Ácido Úrico , Estradiol , Riñón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA