Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(5): 4455-4465, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240145

RESUMEN

Storage capacity, average open circuit voltage (OCV), diffusion barrier, lattice parameter changes, etc. are key indicators of whether a material would be suitable for use as a Li-ion or non-Li-ion battery (LIB or NLIB) anode. The rapid development of 2D materials over the past few decades has opened up new possibilities for these metrics. Using first-principles calculations, we prove that two 2D materials, TiB4 and SrB8, show excellent performance in terms of the above metrics when used as anodes for LIBs or NLIBs. As detailed, TiB4 has an Li\Na\K\Ca storage capacity of 588 mA h g-1, 588 mA h g-1, 588 mA h g-1, and 1176 mA h g-1, respectively, and SrB8 has an Li\Na\K\Ca storage capacity of 308 mA h g-1, 308 mA h g-1, 462 mA h g-1, and 616 mA h g-1, respectively, and they show good electrical conductivity whether existing Li, Na, K or Ca is adsorbed or not. The diffusion barriers on both surfaces are low, indicating good rate performance. The average OCV is also very low. In particular, the lattice parameters of the two materials change very little during the embedding of Li\Na\K\Ca. For Ti9B36 the corresponding values are about 0.37% (Li), 0.33% (Na), 0.64% (K) and 0.03% (Ca), and for Sr8B64 the corresponding values are about 0.70% (Li), 0.16% (Na), 0.13% (K) and 0.004% (Ca), which imply zero strain-like character and great cycling performance. All the above results show that TiB4 and SrB8 monolayers are very promising Li\Na\K\Ca ion battery anodes.

2.
RSC Adv ; 13(24): 16758-16764, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37284184

RESUMEN

Novel two-dimensional (2D) electrode materials have become a new frontier for mining electrode materials for Li-ion batteries (LIBs) and Na-ion batteries (NIBs). Herein, based on first-principles calculations, we present a systematic study on the Li and Na storage behaviors in Calypso-predicted completely flat 2D boron oxide (l-B2O) with large mesh pores. We start our calculations from geometrical optimization, followed by a performance evaluation of Li/Na adsorption and migration processes. Finally, the specific capacity and average open-circuit voltage are evaluated. Our study reveals that l-B2O has good electrical conductivity before and after Li/Na adsorption and the Li/Na diffusion barrier height and average open-circuit voltage are both low, which is beneficial to the rate performance and full-cell operation voltage, respectively. Furthermore, it suffers a small lattice change (<1.7%), ensuring good cycling performance. In particular, we find that the Li and Na theoretical specific capacities of l-B2O can reach up to 1068.5 mA h g-1 and 712.3 mA h g-1, respectively, which are almost 2-3 times higher than graphite (372 mA h g-1). All the above outcomes indicate that 2D l-B2O is a promising anode material for LIBs and NIBs.

3.
Small ; 18(15): e2106716, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218141

RESUMEN

Herein, a type of hypervalent iodine compound-iodosobenzene (PhIO)-is proposed to regulate the LiPSs electrochemistry and enhance the performance of Li-S battery. PhIO owns the practical advantages of low-cost, commercial availability, environmental friendliness and chemical stability. The lone pair electrons of oxygen atoms in PhIO play a critical role in forming a strong Lewis acid-base interaction with terminal Li in LiPSs. Moreover, the commercial PhIO can be easily converted to nanoparticles (≈20 nm) and uniformly loaded on a carbon nanotube (CNT) scaffold, ensuring sufficient chemisorption for LiPSs. The integrated functional PhIO@CNT interlayer affords a LiPSs-concentrated shield that not only strongly obstructs the LiPSs penetration but also significantly enhances the electrolyte wettability and Li+ conduction. The PhIO@CNT interlayer also serves as a "vice current collector" to accommodate various LiPSs and render smooth LiPSs transformation, which suppresses insulating Li2 S2 /Li2 S layer formation and facilitates Li+ diffusion. The Li-S battery based on PhIO@CNT interlayer (6 wt% PhIO) exhibits stable cycling over 1000 cycles (0.033% capacity decay per cycle) and excellent rate performance (686.6 mAh g-1 at 3 C). This work demonstrates the great potential of PhIO in regulating LiPSs and provides a new avenue towards the low-cost and sustainable application of Li-S batteries.

4.
J Tradit Chin Med ; 41(1): 117-124, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33522204

RESUMEN

OBJECTIVE: To evaluate the efficacy of Huanglian root decoction (, HLD) on kidney injury in rat's model of metabolic syndrome (MetS), and investigate the possible mechanism. METHODS: A fructose-induced MetS rat model and human renal tubular epithelial cell-line model were used to compare the efficacy of HLD with that of berberine and tauroursodeoxycholic acid (TUDCA). Blood pressure, biochemical parameters, histopathological changes and the expression levels of oxidative stress markers were evaluated in the animal model at the end of an 8-week treatment regimen. Oxidative stress markers and molecules of the signal pathway of endoplasmic reticulum (ER) stress were evaluated in the human cell-line model. RESULTS: Levels of fasting insulin, systolic blood pressure and diastolic blood pressure were significantly decreased in rats in the Huanglian group compared to those in the MetS group (P < 0.05). Rats treated with HLD and TUDCA exhibited a significant reduction in blood levels of malondialdehyde compared to those in rats in the MetS group (P < 0.05). Significant increases in glutathione peroxidase in human tubular epithelial cells was found in the Huanglian group compared to that in the MetS group (14.02 vs 18.31, P < 0.05). The mRNA expression of protein kinase RNA-like endoplasmic reticulum kinase and eukaryotic translation initiation factor 2 α decreased significantly in Huanglian groups compared with that in the MetS group. CONCLUSION: HLD has therapeutic efficacy on kidney injury in the MetS rat's model, and is non-inferior to berberine and TUDCA.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Enfermedades Renales/tratamiento farmacológico , Síndrome Metabólico/complicaciones , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/lesiones , Riñón/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/química , Ratas , Ratas Wistar
5.
Front Chem ; 6: 78, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755966

RESUMEN

Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g-1 after 150 cycles at 0.2 A g-1, and a high capacity of 531.2 mA h g-1 can be observed even after 5,000 cycles at 10.0 A g-1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g-1 can be obtained at 5.0 A g-1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

6.
Nanotechnology ; 29(21): 215711, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29513272

RESUMEN

Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.

7.
RSC Adv ; 8(71): 41101-41108, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-35557889

RESUMEN

Herein, we present a simple and rapid method to synthesize porous silicon/carbon microtube composites (PoSi/CMTs) by adopting a unique configuration of acid etching solution. The CMTs can act as both conductive agent and buffer for Si volume change during the charge and discharge process. The highly reversible capacity and excellent rate capability can be ascribed to the structure, where porous silicon powders are wrapped by a network of interwoven carbon microtubes. The composites show specific capacities of more than 1712 mA h g-1 at a current density of 100 mA g-1, 1566 mA h g-1 at 200 mA g-1, 1407 mA h g-1 at 400 mA g-1, 1177 mA h g-1 at 800 mA g-1, 1107 mA h g-1 at 1000 mA g-1, 798 mA hg-1 at 2000 mA g-1, and 581 mA h g-1 at 3000 mA g-1 and maintain a value of 1127 mA h g-1 after 100 cycles at a current density of 200 mA g-1. Electrochemical impedance spectroscopy (EIS) measurements prove that charge transfer resistance of PoSi/CMT composites is smaller than that of pure PoSi. In this study, we propose a quick, economical and feasible method to prepare silicon-based anode materials for lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...