Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Med Image Anal ; 96: 103208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788327

RESUMEN

General movement and pose assessment of infants is crucial for the early detection of cerebral palsy (CP). Nevertheless, most human pose estimation methods, in 2D or 3D, focus on adults due to the lack of large datasets and pose annotations on infants. To solve these problems, here we present a model known as YOLO-infantPose, which has been fine-tuned, for infant pose estimation in 2D. We further propose a self-supervised model called STAPose3D for 3D infant pose estimation based on videos. We employ multi-view video data during the training process as a strategy to address the challenge posed by the absence of 3D pose annotations. STAPose3D combines temporal convolution, temporal attention, and graph attention to jointly learn spatio-temporal features of infant pose. Our methods are summarized into two stages: applying YOLO-infantPose on input videos, followed by lifting these 2D poses along with respective confidences for every joint to 3D. The employment of the best-performing 2D detector in the first stage significantly improves the precision of 3D pose estimation. We reveal that fine-tuned YOLO-infantPose outperforms other models tested on our clinical dataset as well as two public datasets MINI-RGBD and YouTube-Infant dataset. Results from our infant movement video dataset demonstrate that STAPose3D effectively comprehends the spatio-temporal features among different views and significantly improves the performance of 3D infant pose estimation in videos. Finally, we explore the clinical application of our method for general movement assessment (GMA) in a clinical dataset annotated as normal writhing movements or abnormal monotonic movements according to the GMA standards. We show that the 3D pose estimation results produced by our STAPose3D model significantly boost the GMA prediction performance than 2D pose estimation. Our code is available at github.com/wwYinYin/STAPose3D.


Asunto(s)
Imagenología Tridimensional , Postura , Grabación en Video , Humanos , Lactante , Imagenología Tridimensional/métodos , Postura/fisiología , Parálisis Cerebral/diagnóstico por imagen , Parálisis Cerebral/fisiopatología , Algoritmos , Aprendizaje Automático Supervisado
2.
Front Pharmacol ; 14: 1295463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094889

RESUMEN

SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE-/- mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE-/- mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification.

3.
Iran J Public Health ; 52(8): 1542-1554, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37744529

RESUMEN

Background: Repeated implantation failure (RIF) is considered one of the major challenges facing clinician in assisted reproduction technologies (ART) despite the significant advances that have been made in this field. Platelet rich plasma (PRP), also known as autologous conditioned plasma, is a protein concentrate with anti-inflammatory and pro-regenerative characteristics. The use of PRP in women undergoing ART has been studied in the past, with varying degrees of success. The goal of this trial was to see if injecting PRP into the uterus improves pregnancy outcomes in women receiving ART. Methods: PubMed, Embase, Scopus, Web of Science, and the Cochrane Database of Clinical Trials were among the databases searched (CENTRAL), from 2015 to 2021. The pooled estimates were calculated using a meta-analysis with a random-effects model. There were 14 studies with a total of 1081 individuals (549 cases and 532 controls). Results: There was no difference in miscarriage rates between women who got PRP and those who received placebo (P≤0.90). Chemical pregnancy (P≤0.00), clinical pregnancy (P ≤0.001), and implantation rate (P≤ 0.001) were all significantly higher in women. Endometrial thickness increased in women who got PRP vs women who received placebo after the intervention (P ≤0.001). Conclusion: PRP may be an alternate therapeutic approach for individuals with thin endometrium and RIF, according to the findings of this comprehensive study. To determine the subgroup that would benefit the most from PRP, more prospective, big, and high-quality randomized controlled trials (RCTs) are needed.

6.
J Neuroinflammation ; 20(1): 39, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803376

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are highly enriched in the central nervous system and have been implicated in neurodegenerative diseases. However, whether and how circRNAs contribute to the pathological processes induced by traumatic brain injury (TBI) has not been fully elucidated. METHODS: We conducted a high-throughput RNA sequencing screen for well-conserved, differentially expressed circRNAs in the cortex of rats subjected to experimental TBI. Circular RNA METTL9 (circMETTL9) was ultimately identified as upregulated post-TBI and further characterized by RT-PCR and agarose gel electrophoresis, Sanger sequencing, and RNase R treatment. To examine potential involvement of circMETTL9 in neurodegeneration and loss of function following TBI, circMETTL9 expression in cortex was knocked-down by microinjection of a shcircMETTL9 adeno-associated virus. Neurological functions were evaluated in control, TBI, and TBI-KD rats using a modified neurological severity score, cognitive function using the Morris water maze test, and nerve cell apoptosis rate by TUNEL staining. Pull-down assays and mass spectrometry were conducted to identify circMETTL9-binding proteins. Co-localization of circMETTL9 and SND1 in astrocytes was examined by fluorescence in situ hybridization and immunofluorescence double staining. Changes in the expression levels of chemokines and SND1 were estimated by quantitative PCR and western blotting. RESULTS: CircMETTL9 was significantly upregulated and peaked at 7 d in the cerebral cortex of TBI model rats, and it was abundantly expressed in astrocytes. We found that circMETTL9 knockdown significantly attenuated neurological dysfunction, cognitive impairment, and nerve cell apoptosis induced by TBI. CircMETTL9 directly bound to and increased the expression of SND1 in astrocytes, leading to the upregulation of CCL2, CXCL1, CCL3, CXCL3, and CXCL10, and ultimately to enhanced neuroinflammation. CONCLUSION: Altogether, we are the first to propose that circMETTL9 is a master regulator of neuroinflammation following TBI, and thus a major contributor to neurodegeneration and neurological dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , ARN Circular , Ratas , Animales , ARN Circular/genética , Enfermedades Neuroinflamatorias , Astrocitos/metabolismo , Hibridación Fluorescente in Situ , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Endonucleasas
8.
Acta Pharmacol Sin ; 44(2): 345-355, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35945313

RESUMEN

Abdominal aortic aneurysm (AAA) is a dangerous vascular disease without any effective drug therapies so far. Emerging evidence suggests the phenotypic differences in perivascular adipose tissue (PVAT) between regions of the aorta are implicated in the development of atherosclerosis evidenced by the abdominal aorta more vulnerable to atherosclerosis than the thoracic aorta in large animals and humans. The prevalence of thoracic aortic aneurysms (TAA) is much less than that of abdominal aortic aneurysms (AAA). In this study we investigated the effect of thoracic PVAT (T-PVAT) transplantation on aortic aneurysm formation and the impact of T-PVAT on vascular smooth muscle cells. Calcium phosphate-induced mouse AAA model was established. T-PVAT (20 mg) was implanted around the abdominal aorta of recipient mice after removal of endogenous abdominal PVAT (A-PVAT) and calcium phosphate treatment. Mice were sacrificed two weeks after the surgery and the maximum external diameter of infrarenal aorta was measured. We found that T-PVAT displayed a more BAT-like phenotype than A-PVAT; transplantation of T-PVAT significantly attenuated calcium phosphate-induced abdominal aortic dilation and elastic degradation as compared to sham control or A-PVAT transplantation. In addition, T-PVAT transplantation largely preserved smooth muscle cell content in the abdominal aortic wall. Co-culture of T-PVAT with vascular smooth muscle cells (VSMCs) significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. RNA sequencing analysis showed that T-PVAT was enriched by browning adipocytes and anti-apoptotic secretory proteins. We further verified that the secretome of mature adipocytes isolated from T-PVAT significantly inhibited H2O2- or TNFα plus cycloheximide-induced VSMC apoptosis. Using proteomic and bioinformatic analyses we identified cartilage oligomeric matrix protein (COMP) as a secreted protein significantly increased in T-PVAT. Recombinant COMP protein significantly inhibited VSMC apoptosis. We conclude that T-PVAT exerts anti-apoptosis effect on VSMCs and attenuates AAA formation, which is possibly attributed to the secretome of browning adipocytes.


Asunto(s)
Aneurisma de la Aorta Abdominal , Aneurisma de la Aorta , Aterosclerosis , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Peróxido de Hidrógeno/metabolismo , Secretoma , Músculo Liso Vascular/metabolismo , Cicloheximida/metabolismo , Proteómica , Tejido Adiposo/metabolismo , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/metabolismo , Aorta Abdominal/cirugía , Aterosclerosis/metabolismo , Adipocitos Marrones , Ratones Endogámicos C57BL
9.
Inflammation ; 46(1): 244-255, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35969281

RESUMEN

Chemokines may promote neuroinflammation following traumatic brain injury (TBI), thereby exacerbating secondary injury. This study was designed to investigate the contributions of chemokines (CCL2, CCL5, CXCL1, CXCL10, and CXCL13) to TBI severity and clinical outcome. Peripheral blood was drawn from 92 TBI patients on admission, and 40 controls were recruited. Serum concentrations of CCL2, CCL5, CXCL1, CXCL10, and CXCL13 on admission were measured by ELISA. Preoperative clinical severity was evaluated using the Glasgow Coma Scale (GCS), and clinical outcome at 90 days post-TBI was evaluated using the Glasgow Outcome Scale (GOS). The associations were evaluated by calculating Spearman's correlation coefficients. A binary logistic regression model was used to identify clinicodemographic factors influencing outcome, and ROC curves were constructed. Serum concentrations of CCL2, CCL5, CXCL1, CXCL10, and CXCL13 were elevated significantly after TBI and negatively correlated with GCS and GOS scores except CCL5. CCL2 may be considered as an independent predictor to predict severity and outcome. Moreover, combination of GCS score, CCL2, and CXCL10 can be a better assessment prognosis of moderate and severe TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocina CCL2 , Humanos , Lesiones Traumáticas del Encéfalo/diagnóstico , Pronóstico , Escala de Consecuencias de Glasgow , Escala de Coma de Glasgow , Quimiocina CXCL1 , Quimiocina CXCL13 , Quimiocina CXCL10 , Quimiocina CCL5
10.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887386

RESUMEN

Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.


Asunto(s)
Microbioma Gastrointestinal , Terapia por Luz de Baja Intensidad , Insuficiencia Renal Crónica , Disbiosis , Humanos , Inflamación , Diálisis Renal , Insuficiencia Renal Crónica/radioterapia
11.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3554-3561, 2022 Jul.
Artículo en Chino | MEDLINE | ID: mdl-35850809

RESUMEN

The present study investigated the effect of Rehmanniae Radix Praeparata(RRP) on the energy metabolism of prefrontal cortex(PFC) of spontaneously hypertensive rats with attention deficit hyperactivity disorder(ADHD) based on the "static Yin and dynamic Yang" theory.Thirty spontaneously hypertensive male rats aged 3 weeks were randomly divided into a model group, a methylphenidate(MPH) group(2 mg·kg~(-1)), and an RRP group(2.4 g·kg~(-1)).Wistar-Kyoto(WKY) male rats of the same age were assigned to the normal group.Rats were treated with corresponding drugs twice per day, and those in the model group and the normal group received the same volume of 0.9% sodium carboxymethyl cellulose(CMC-Na) solution by gavage.The open-field test was performed to evaluate the spontaneous and impulsive behaviors of rats before treatment and on the 4~(th) week after treatment.Four weeks after treatment, PFC was isolated and mitochondria were prepared.The content of adenosine triphosphate(ATP), adenosine diphosphate(ADP), and adenosine monophosphate(AMP) in the PFC was determined by high-performance liquid chromatography(HPLC), and energy charge(EC) was calculated.The parameters related to mitochondrial respiratory function were measured by the Clark oxygen electrode, specifically, state 3 respiration(ST3), state 4 respiration(ST4), and respiratory control rate(RCR).Enzymatic activities of succinate dehydrogenase(SDH), cytochrome C oxidase(COX), Na~+-K~+-ATPase, and Ca~(2+)-Mg~(2+)-ATPase were measured by chemical colorimetry.Mitochondrial permeability transition pore(mPTP) opening was measured by spectrophotometry.Protein expression of glucose transporter 1(GLUT1) and GLUT3 in PFC was tested by Western blot.Compared with the results in the model group, RRP could significantly reduce the total distance of movement, vertical times, and distance in the central area in the open field test(P<0.05 or P<0.01), increase the content of ATP and EC, decrease the content of AMP(P<0.05), elevate ST3 and RCR(P<0.05), potentiate activities of SDH, COX, Na~+-K~+-ATPase, and Ca~(2+)-Mg~(2+)-ATPase(P<0.05 or P<0.01), inhibit the opening of mPTP, and increase the expression levels of GLUT1 and GLUT3 proteins(P<0.05).It was inferred that RRP could inhibit hyperacti-vity and impulsivity by improving the energy metabolism disorder in PFC of ADHD rats, and its mechanism may be related to the improvement of mitochondrial respiratory function, potentiation of Na~+-K~+-ATPase, Ca~(2+)-Mg~(2+)-ATPase, and mitochondrial respiratory enzymes, inhibition of the opening of mPTP, and up-regulation of the expression of glucose transporter proteins.This study initially reveals the biological connotation of the "static Yin and dynamic Yang" theory in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Animales , Masculino , Ratas , Adenosina Monofosfato , Adenosina Trifosfatasas , Adenosina Trifosfato/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Metabolismo Energético , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Metilfenidato/farmacología , Extractos Vegetales , Corteza Prefrontal , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Rehmannia , Poro de Transición de la Permeabilidad Mitocondrial
12.
Nutrients ; 14(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35745257

RESUMEN

Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut-kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.


Asunto(s)
Infecciones por Clostridium , Colitis Ulcerosa , Insuficiencia Renal Crónica , Colitis Ulcerosa/terapia , Trasplante de Microbiota Fecal/métodos , Heces , Humanos , Diálisis Renal , Insuficiencia Renal Crónica/terapia , Resultado del Tratamiento
13.
J Oleo Sci ; 71(6): 813-822, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35584957

RESUMEN

Eggs are nutritious and cheap and easily available. Egg yolk is one of the sources of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). PC and PE have good emulsifying properties, and they are widely used and in high demand for pharmaceutical, feed and cosmetic applications. Red cordyceps egg yolk powder (RCEYP) was selected as the raw material to obtain high content of PC and PE by ethanol extraction and low temperature cryoprecipitation in n-hexane-acetone system (HAS), in which the process conditions of PC and PE extraction by HAS process were optimized. The phospholipids were quantified by high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD). The effects of freezing time, material-liquid ratio, acetone washing times, solvent ratio of n-hexane to acetone and freezing temperature on the PC and PE contents and the phospholipid yield were investigated. The optimal conditions for the extraction of PC and PE from RCEYP by HAS were determined by Box-Behnken design (BBD) as follows: the solvent ratio of n-hexane to acetone was 1:6, the freezing time was 11.31 h, and the freezing temperature was -19°C. The total content of (PC+PE) in the phospholipids precipitated under these conditions amounted to 96.16%, of which 81.12% was PC and 15.04% was PE.


Asunto(s)
Fosfatidilcolinas , Fosfatidiletanolaminas , Acetona , Hexanos , Lecitinas , Fosfolípidos/química , Solventes
14.
Front Med (Lausanne) ; 9: 816656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386912

RESUMEN

Chronic kidney disease (CKD) is rising in global prevalence and has become a worldwide public health problem, with adverse outcomes of kidney failure, cardiovascular disease, and premature death. However, current treatments are limited to slowing rather than reversing disease progression or restoring functional nephrons. Hence, innovative strategies aimed at kidney tissue recovery hold promise for CKD therapy. Mesenchymal stem cells (MSCs) are commonly used for regenerative therapy due to their potential for proliferation, differentiation, and immunomodulation. Accumulating evidence suggests that the therapeutic effects of MSCs are largely mediated by paracrine secretion of extracellular vesicles (EVs), predominantly exosomes. MSC-derived exosomes (MSC-Exos) replicate the functions of their originator MSCs via delivery of various genetic and protein cargos to target cells. More recently, MSC-Exos have also been utilized as natural carriers for targeted drug delivery. Therapeutics can be effectively incorporated into exosomes and then delivered to diseased tissue. Thus, MSC-Exos have emerged as a promising cell-free therapy in CKD. In this paper, we describe the characteristics of MSC-Exos and summarize their therapeutic efficacy in preclinical animal models of CKD. We also discuss the potential challenges and strategies in the use of MSC-Exos-based therapies for CKD in the future.

15.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35015734

RESUMEN

The G protein-coupled CXC chemokine receptor 4 (CXCR4) is a candidate therapeutic target for tissue fibrosis. A fully human single-domain antibody-like scaffold i-body AD-114-PA600 (AD-114) with specific high binding affinity to CXCR4 has been developed. To define its renoprotective role, AD-114 was administrated in a mouse model of renal fibrosis induced by folic acid (FA). Increased extracellular matrix (ECM) accumulation, macrophage infiltration, inflammatory response, TGF-ß1 expression, and fibroblast activation were observed in kidneys of mice with FA-induced nephropathy. These markers were normalized or partially reversed by AD-114 treatment. In vitro studies demonstrated AD-114 blocked TGF-ß1-induced upregulated expression of ECM, matrix metalloproteinase-2, and downstream p38 mitogen-activated protein kinase (p38 MAPK) and PI3K/AKT/mTOR signaling pathways in a renal proximal tubular cell line. Additionally, these renoprotective effects were validated in a second model of unilateral ureteral obstruction using a second generation of AD-114 (Fc-fused AD-114, also named AD-214). Collectively, these results suggest a renoprotective role of AD-114 as it inhibited the chemotactic function of CXCR4 as well as blocked CXCR4 downstream p38 MAPK and PI3K/AKT/mTOR signaling, which establish a therapeutic strategy for AD-114 targeting CXCR4 to limit renal fibrosis.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades Renales/genética , Riñón/patología , Receptores CXCR4/genética , Regulación hacia Arriba , Animales , Línea Celular , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Riñón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores CXCR4/biosíntesis , Transducción de Señal
16.
Curr Opin Nephrol Hypertens ; 31(1): 129-134, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34710887

RESUMEN

PURPOSE OF REVIEW: Diabetic kidney disease (DKD) is a significant health concern. Innovative strategies to prevent or limit the progression of DKD are urgently needed due to the limitation of existing treatments. KCa3.1, a potassium channel, is involved in a range of biological processes from cell survival to cell death. This review summarizes the current knowledge on the pathophysiological functions of the KCa3.1 channel, specifically its involvement in maintaining mitochondrial function. More specifically, the therapeutic potential of targeting KCa3.1 in DKD is systematically discussed in the review. RECENT FINDINGS: Mitochondrial dysfunction contributes to the development and progression of DKD. Accumulating evidence indicates that KCa3.1 dysregulation plays a crucial role in mitochondrial dysfunction, in addition to driving cellular activation, proliferation and inflammation. Recent studies demonstrate that KCa3.1 deficiency improves diabetes-induced mitochondrial dysfunction in DKD, which is attributed to modulation of mitochondrial quality control through mitigating the altered mitochondrial dynamics and restoring abnormal BNIP3-mediated mitophagy. SUMMARY: Based on its role in fibrosis, inflammation and mitochondrial dysfunction, pharmacological inhibition of KCa3.1 may offer a promising alternative for the treatment of DKD. Due to its safety profile in humans, the repurposing of senicapoc has the potential to expedite an urgently needed new drug in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Fibrosis , Humanos , Inflamación , Mitocondrias
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(12): 1214-1220, 2021 Dec 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-34911603

RESUMEN

OBJECTIVES: To study the effect of surgical treatment on prognosis in preterm infants with obstructive hydrocephalus. METHODS: A retrospective analysis was performed on the medical data of 49 preterm infants with obstructive hydrocephalus. According to the treatment regimen, they were divided into two groups: surgical treatment (n=12) and conservative treatment (n=37). The drainage methods, drainage complications, and eventual shunt outcome were analyzed in the surgical treatment group. The two groups were compared in terms of the etiology of hydrocephalus and prognosis. RESULTS: Among the 49 preterm infants with obstructive hydrocephalus, severe intracranial hemorrhage (37 cases; 76%) and central nervous system infection (10 cases, 20%) were the main causes of hydrocephalus. There was no significant difference in the composition of etiology between the two groups (P>0.05). In the surgical treatment group, 4 infants were treated with ventriculosubgaleal shunt and 8 were treated with Ommaya reservoir. One infant had secondary infection and 8 infants eventually underwent ventriculoperitoneal shunt. The surgical treatment group had a significantly higher survival rate than the conservative treatment group (P<0.05). As for the 37 preterm infants with severe intracranial hemorrhage, the surgical treatment group had a significantly higher proportion of infants with normal neurodevelopment than the conservative treatment group (P<0.05). As for the 10 preterm infants with central nervous system infection, neurodevelopmental abnormalities were observed in each of the two groups. CONCLUSIONS: Surgical treatment can improve the survival rate of preterm infants with obstructive hydrocephalus and the prognosis of preterm infants with severe intracranial hemorrhage.


Asunto(s)
Hidrocefalia , Recien Nacido Prematuro , Hemorragia Cerebral , Humanos , Hidrocefalia/etiología , Hidrocefalia/cirugía , Lactante , Recién Nacido , Pronóstico , Estudios Retrospectivos , Resultado del Tratamiento
18.
Neuroreport ; 32(15): 1255-1262, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34494990

RESUMEN

OBJECTIVE: The anti-inflammatory mechanisms of hyperbaric oxygenation (HBO) treatment on traumatic brain injury (TBI)-induced neuroinflammation remain unclear. The aim of this study was expected the effect of HBO on CCL2-related signaling pathway following severe TBI in rats. METHODS: The severe TBI model in rats was induced by controlled cortical impact. TBI rats were treated with CCR2 antagonist, p38 inhibitor, or HBO. Modified neurological severity scores and Morris water maze were used to evaluate neurological and cognitive function. The expression levels of CCL2 and CCR2 were measured by ELISA and real-time fluorescence quantitative PCR. Phospho-p38 expression was analyzed by western blotting. RESULTS: TBI-induced upregulation of CCL2, CCR2, and p38 in the injured cortex. Application of CCR2 antagonist improved neurological and cognitive function of TBI rats. Application of p38 inhibitor decreased expression of CCL2 and CCR2 in the injured of TBI rats, meanwhile improved neurological and cognitive function. HBO improved neurological and cognitive function by decreasing the expressions of CCL2, CCR2, and phospho-p38. CONCLUSIONS: This study indicates that the p38-MAPK-CCL2 signaling pathway could mediate neuroinflammation and HBO therapy can modulate neuroinflammation by modulating the p38-MAPK-CCL2 signaling pathways following TBI. This study may provide theoretical evidence for HBO treatment in the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/terapia , Corteza Cerebral/metabolismo , Quimiocina CCL2/metabolismo , Cognición/fisiología , Oxigenoterapia Hiperbárica , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
19.
Int J Chron Obstruct Pulmon Dis ; 16: 2375-2383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34429595

RESUMEN

Objective: To evaluate the effect of doxofylline on reducing the inflammatory response in mechanically ventilated rats with chronic obstructive pulmonary disease (COPD). Methods: A total of 40 eight-week-old male Sprague Dawley rats were randomly divided into four groups of 10 rats each: a control group (group C), a model group (group M), a model + natural saline group (group N), and a doxofylline group (group D). Then mechanical ventilation, drug intervention, and the extraction of the experimental material were performed in each group. Pulmonary tissue samples were taken after 120 minutes of mechanical ventilation and the pulmonary histopathological changes and the wet/dry (W/D) weight ratio of the pulmonary tissue were identified. The levels of tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10) were detected using an enzyme-linked immunosorbent assay, and the expression levels of c-Jun-N-terminal kinase (JNK) and phosphorylated c-Jun N-terminal kinase (p-JNK) were detected using immunohistochemistry. Results: Compared with group C, the pulmonary histopathology in groups M, N, and D showed typical changes associated with COPD. Furthermore, the W/D weight ratio and levels of TNF-α, JNK, and p-JNK in the pulmonary tissue increased in groups M, N, and D (P < 0.05), while the levels of IL-10 decreased (P < 0.05). Compared with group M, no statistically significant changes in the above indicators were detected in the pulmonary tissue of group N (P > 0.05). Compared with group N, the W/D weight ratio and levels of TNF-α, JNK, and p-JNK in the pulmonary tissue decreased in group D (P < 0.05), while the levels of IL-10 increased (P < 0.05). Conclusion: Doxofylline might attenuate pulmonary inflammatory responses in mechanically ventilated rats with COPD, and the JNK/stress-activated protein kinase signaling pathway is involved in doxofylline's inhibition of inflammatory responses in the pulmonary tissue of rats with COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Animales , Pulmón , Masculino , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Respiración Artificial , Teofilina/análogos & derivados , Factor de Necrosis Tumoral alfa
20.
Front Cell Dev Biol ; 9: 699073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179024

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2020.00502.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...