Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Anim Resour ; 42(6): 996-1008, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415573

RESUMEN

Lactic acid bacteria are representative probiotics that have beneficial effects on humans. Nineteen strains among the 167 single strains from kimchi was selected and their physiological features were investigated. The selection of a strain was based on strong enzyme (lipase, α-amylase, and α-glucosidase) inhibitory activities and anti-obesity effects in the adipocytes. For the final selection, the strain Lactiplantibacillus plantarum KC3 was tested for its potential as a starter. To assess its functionality, a freeze-dried culture of L. plantarum KC3 was administered to a diet-induced obese mouse model receiving a high-fat diet. The animal group administered with L. plantarum KC3 showed significant body weight loss during the 12-week feeding period compared to the high-fat control group. This study investigated the physiological characteristics of selected strain and evaluated its potential as an anti-obesity probiotic in mice.

2.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768960

RESUMEN

Deep learning has proven advantageous in solving cancer diagnostic or classification problems. However, it cannot explain the rationale behind human decisions. Biological pathway databases provide well-studied relationships between genes and their pathways. As pathways comprise knowledge frameworks widely used by human researchers, representing gene-to-pathway relationships in deep learning structures may aid in their comprehension. Here, we propose a deep neural network (PathDeep), which implements gene-to-pathway relationships in its structure. We also provide an application framework measuring the contribution of pathways and genes in deep neural networks in a classification problem. We applied PathDeep to classify cancer and normal tissues based on the publicly available, large gene expression dataset. PathDeep showed higher accuracy than fully connected neural networks in distinguishing cancer from normal tissues (accuracy = 0.994) in 32 tissue samples. We identified 42 pathways related to 32 cancer tissues and 57 associated genes contributing highly to the biological functions of cancer. The most significant pathway was G-protein-coupled receptor signaling, and the most enriched function was the G1/S transition of the mitotic cell cycle, suggesting that these biological functions were the most common cancer characteristics in the 32 tissues.


Asunto(s)
Aprendizaje Profundo , Neoplasias/clasificación , Neoplasias/genética , RNA-Seq/estadística & datos numéricos , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Diagnóstico por Computador , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias/diagnóstico , Redes Neurales de la Computación
3.
J Pers Med ; 11(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33671853

RESUMEN

Technological advances in next-generation sequencing (NGS) have made it possible to uncover extensive and dynamic alterations in diverse molecular components and biological pathways across healthy and diseased conditions. Large amounts of multi-omics data originating from emerging NGS experiments require feature engineering, which is a crucial step in the process of predictive modeling. The underlying relationship among multi-omics features in terms of insulin resistance is not well understood. In this study, using the multi-omics data of type II diabetes from the Integrative Human Microbiome Project, from 10,783 features, we conducted a data analytic approach to elucidate the relationship between insulin resistance and multi-omics features, including microbiome data. To better explain the impact of microbiome features on insulin classification, we used a developed deep neural network interpretation algorithm for each microbiome feature's contribution to the discriminative model output in the samples.

4.
Probiotics Antimicrob Proteins ; 13(3): 677-697, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33188637

RESUMEN

Lactobacillus plantarum KC28 showed a beneficial (anti-obesity) effect in a diet-induced obese (DIO) C57BL/6 murine model receiving an intermediate high-fat diet (IF). This diet was selected for probiotic studies by prior comparisons of different combinations of basic (carbohydrate, protein and fat) components for optimized induction of dietary obesity in a murine model. Prior selection of Lact. plantarum strain KC28 was based on different physiological tests for safety and functionality including cell line adhesion and anti-adipogenic activity. The strain was administered at 5.0 × 109 CFU/mouse/day to the DIO mice (control mice received a normal diet). The anti-obesity effect of KC28 and the well-known probiotic strains Lact. rhamnosus GG (LGG) and Lact. plantarum 299v was assessed over 12 weeks. Xenical served as anti-obesity control. The high-fat diet groups receiving strains KC28 and LGG and the control Xenical group showed significant weight loss and notable changes in some obesity-related biomarkers in the liver (significant up-regulation of PGC1-α and CPT1-α only by KC28; p < 0.05) and mesenteric adipose tissue (significant down-regulation of ACOX-1, PPAR-γ, and FAS; KC28 p < 0.001 for PPAR-γ and FAS), compared with the IF control. Favourable changes in the studied biomarkers suggest a similar beneficial influence of Lact. plantarum KC28 on the alleviation of obesity comparable with that of the two well-studied probiotic strains, LGG and 299v. This probably resulted from a modulation in the cecal microbiota of the IF group by either probiotic strain, yet in a different manner, showing a highly significant increase in the families Desulfovibrionaceae and Lactobacillaceae only in the group receiving Lact. plantarum KC28.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus plantarum , Obesidad/terapia , Probióticos , Animales , Biomarcadores , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Orlistat , Receptores Activados del Proliferador del Peroxisoma
5.
Front Microbiol ; 11: 420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256476

RESUMEN

Gastric inflammation is an indication of gastric ulcers and possible other underlying gastric malignancies. Epidemiological studies have revealed that several Asian countries, including South Korea, suffer from a high incidence of gastric diseases derived from high levels of stress, alcoholic consumption, pyloric infection and usage of non-steroidal anti-inflammatory drugs (NSAIDs). Clinical treatments of gastric ulcers are generally limited to proton pump inhibitors that neutralize the stomach acid, and the application of antibiotics for Helicobacter pylori eradication, both of which are known to have a negative effect on the gut microbiota. The potential of probiotics for alleviating gastrointestinal diseases such as intestinal bowel syndrome and intestinal bowel disease receives increasing scientific interest. Probiotics may support the amelioration of disease-related symptoms through modulation of the gut microbiota without causing dysbiosis. In this study the potential of Lactobacillus plantarum APSulloc 331261 (GTB1TM), isolated from green tea, was investigated for alleviating gastric inflammation in an alcohol induced gastric ulcer murine model (positive control). Treatment with the test strain significantly influenced the expression of pro-inflammatory and anti-inflammatory biomarkers, interleukin 6 (IL6) and interleukin 10 (IL10), of which the former was down- and the latter up-regulated when the alcohol induced mice were treated with the test strain. This positive effect was also indicated by less severe gastric morphological changes and the histological score of the gastric tissues. A significant increase in the abundance of Akkermansia within the GTB1TM treated group compared to the positive control group also correlated with a decrease in the ratio of acetate over propionate. The increased levels of propionate in the GTB1TM group appear to result from the impact of the test strain on the microbial population and the resulting metabolic activities. Moreover, there was a significant increase in beta-diversity in the group that received GTB1TM over that of the alcohol induced control group.

6.
Sci Rep ; 9(1): 6821, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048785

RESUMEN

Recent progresses in clinical diagnostic analyses have demonstrated the decisive influence of host gut microbiota on the status of metabolic disorders. Short chain fatty acids (SCFAs) produced by gut microbiota, in particular, are considered as a key biomarker, both of communication between gut microbiota and the host, and of impact on host metabolic homeostasis. Microbiota modulation and concomitant anti-obesity effects of probiotics have been reported by different researchers. However, the underlying modulatory functions of probiotics on gut microbiota towards host metabolic homeostasis are still not fully understood. In this study, the impact of Lactobacillus sakei CJLS03 (isolated from Korean kimchi) on obesity-related biomarkers was investigated using a diet-induced obese mouse model. Body weight increase, SCFAs, the gut microbiota and various obesity-associated biomarkers were significantly and beneficially influenced by L. sakei CJLS03 administration compared to the control groups. Analytical data on faecal samples support the role of the colonic microbial population in SCFA production. The composition of the latter may be influenced by modulation of the distal gastro-intestinal microbiota by putative probiotics such as L. sakei CJLS03.


Asunto(s)
Biomarcadores , Dieta Alta en Grasa , Microbioma Gastrointestinal , Latilactobacillus sakei , Obesidad/etiología , Obesidad/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Ratones , Ratones Obesos , Aumento de Peso
7.
Biomedicines ; 6(4)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518033

RESUMEN

Psychobiotics are probiotic strains that confer mental health benefits to the host through the modulation of the gut microbial population. Mounting evidence shows that the gut microbiota play an important role in communication within the gut⁻brain axis. However, the relationship between the host genetics and the gut microbiota and their influence on anxiety are still not fully understood. Hence, in our research, we attempted to draw a connection between host genetics, microbiota composition, and anxiety by performing an elevated plus maze (EPM) test on four genetically different mice. Four different breeds of 5-week-old mice were used in this experiment: Balb/c, Orient C57BL/6N, Taconic C57BL/6N, and Taconic C57BL/6J. After 1 week of adaptation, their initial anxiety level was monitored using the EPM test via an EthoVision XT, a standardized software used for behavorial testing. Significant differences in the initial anxiety level and microbial composition were detected. Subsequently, the microbiota of each group was modulated by the administration of either a probiotic, fecal microbiota transplantation, or antibiotics. Changes were observed in host anxiety levels in correlation to the shift of the gut microbiota. Our results suggest that the microbiota, host genetics, and psychological symptoms are strongly related, yet the deeper mechanistic links need further exploration.

8.
Korean J Food Sci Anim Resour ; 38(3): 554-569, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30018499

RESUMEN

This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum K10. The α-amylase inhibitory activity, α-glucosidase inhibitory activity, and lipase inhibitory activity of L. plantarum K10 was 94.66±4.34%, 99.78±0.12%, and 87.40±1.41%, respectively. Moreover, the strain inhibited the adipocyte differentiation of 3T3-L1 cells (32.61±8.32%) at a concentration of 100 µg/mL. In order to determine its potential for use as a probiotic, we investigated the physiological characteristics of L. plantarum K10. L. plantarum K10 was resistant to gentamycin, kanamycin, streptomycin, ampicillin, ciprofloxacin, tetracycline, vancomycin, and chloramphenicol. It also showed higher Leucine arylamidase, Valine arylamidase, and ß-galactosidase activities. Moreover, it was comparatively tolerant to bile juice and acid, exhibiting resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus with rates of 90.71%, 11.86%, 14.19%, and 23.08%, respectively. The strain did not produce biogenic amines and showed higher adhesion to HT-29 cells compared to L. rhamnosus GG. As a result of the animal study, L. plantarum K10 showed significantly lower body weight compared to the high-fat diet group. The administration of L. plantarum K10 resulted in a reduction of subcutaneous fat mass and mesenteric fat mass compared to the high-fat diet (HFD) group. L. plantarum K10 also showed improvement in gut permeability compared to the HFD positive control group. These results demonstrate that L. plantarum K10 has potential as a probiotic with anti-obesity effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...