Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402345, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967353

RESUMEN

Constructing organic composite materials through molecular recognition has emerged as an important theme in materials science. Here we report an ion-pair recognition system involving the use of a propoxylated pillar[5]arene (PrP5) to modulate the solid-state photophysical properties of dye trans-4'-(dimethylamino)-N-methyl-4-stilbazolium hexafluorophosphate (DMASP). Single crystal X-ray diffraction analysis reveals that the dye guest DMASP is encapsulated by PrP5 to form a 2:1 host-guest complex 2PrP5⸧DMASP in the crystalline state. The macrocyclic skeleton of PrP5 imposes restrictions on the intramolecular motions of the dye guest, leading to a significant enhancement of its fluorescence emission. Additionally, within the 2PrP5⸧DMASP complex crystal structure, DMASP molecules are found to display two possible opposite orientations in the one-dimensional channels formed by PrP5 molecules. This arrangement is believed to alter the overall solid-state packing structure of DMASP, thereby activating its nonlinear optical activity. This work not only reports a novel ion-pair molecular recognition system based on pillararenes but also provides valuable insights into the modulation of the crystalline state photophysical properties of organic dyes via cocrystal engineering.

2.
Nat Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026092

RESUMEN

The aesthetic and practicality of macroscopic fabrics continue to encourage chemists to weave molecules into interlaced patterns with the aim of providing emergent physical and chemical properties when compared with their starting materials. Weaving purely organic molecular threads into flawless two-dimensional patterns remains a formidable challenge, even though its feasibility has been proposed on several occasions. Herein we describe the synthesis of a flawless, purely organic, free-standing two-dimensional woven polymer network driven by dative B-N bonds. Single crystals of this woven polymer network were obtained and its well-defined woven topology was revealed by X-ray diffraction analysis. Free-standing two-dimensional monolayer nanosheets of the woven polymer network were exfoliated from the layered crystals using Scotch Magic Tape. The surface features of the nanosheets were investigated by integrated low-dose and cryogenic electron microscopy imaging techniques. These findings demonstrate the precise construction of purely organic woven polymer networks and highlight the unique opportunities for the application of woven topologies in two-dimensional organic materials.

3.
Chem Sci ; 15(28): 10713-10723, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027271

RESUMEN

Hydrocarbon belts have garnered significant attention due to their intriguing structures, unique properties, and potential applications in supramolecular chemistry and materials science. However, their highly inherently strained structures pose challenges in their synthesis, and the resulting tedious synthesis strategies hinder their large-scale applications. Utilizing unstrained macrocyclic arenes as precursors presents an efficient strategy, allowing for a strain-induction step that mitigates the energy barrier associated with building strain in the formation of these belts. Accessible unstrained macrocyclic precursors play a pivotal role in enabling efficient and large-scale syntheses of highly strained belts, facilitating their broader practical applications. This review provides an overview of the recent advancements in the construction of hydrocarbon belts using accessible macrocyclic arenes as building blocks. The synthetic strategies for these partially and fully conjugated hydrocarbon belts are discussed, along with their unique properties. We hope that this review will inspire the development of novel nanocarbon molecules, opening pathways for emerging areas and applications.

4.
Org Lett ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018115

RESUMEN

Herein, a novel pillararene-based cavitand with fixed planar chirality was synthesized by the SuFEx reaction. As demonstrated by single crystal X-ray analysis, host-guest capsules involving this cavitand and linear alkanes with specific lengths are observed in the solid state. The formation of each capsule is driven by hydrogen bonding interactions between a linear alkane molecule and two cavitand molecules, as well as noncovalent interactions between the two cavitand molecules in this capsule.

5.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888082

RESUMEN

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Asunto(s)
Inmunoterapia , Estrés Oxidativo , Piroptosis , Especies de Nitrógeno Reactivo , Microambiente Tumoral , Piroptosis/efectos de los fármacos , Animales , Especies de Nitrógeno Reactivo/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Melanoma Experimental/patología
6.
Acc Chem Res ; 57(8): 1174-1187, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557015

RESUMEN

Supramolecular coordination complexes (SCCs) are predictable and size-tunable supramolecular self-assemblies constructed through directional coordination bonds between readily available organic ligands and metallic receptors. Based on planar and 3D structures, SCCs can be mainly divided into two categories: metallacycles (e.g., rhomboidal, triangular, rectangular, and hexagonal) and metallacages (e.g., tetrahedral, hexahedral, and dodecahedral). The directional coordination bonds enable the efficient formation of metallacycles and metallacages with well-defined architectures and geometries. SCCs exhibit several advantages, including good directionality, strong interaction force, tunable modularity, and good solution processability, making them highly attractive for biomedical applications, especially in cellular imaging and cancer therapy. Compared with their molecular precursors, SCCs demonstrate enhanced cellular uptake and a strengthened tumor accumulation effect, owing to their inherently charged structures. These properties and the chemotherapeutic potential inherent to organic platinum complexes have promoted their widespread application in antitumor therapy. Furthermore, the defined structures of SCCs, achieved via the design modification of assembly elements and introduction of different functional groups, enable them to combat malignant tumors through multipronged treatment modalities. Because the development of cancer-treatment methodologies integrated in clinics has evolved from single-modality chemotherapy to synergistic multimodal therapy, the development of functional SCCs for synergistic cancer therapy is crucial. While some pioneering reviews have explored the bioapplications of SCCs, often categorized by a specific function or focusing on the specific metal or ligand types, a comprehensive exploration of their synergistic multifunctionality is a critical gap in the current literature.In this Account, we focus on platinum-based SCCs and their applications in cancer therapy. While other metals, such as Pd-, Rh-, Ru-, and Ir-based SCCs, have been explored for cancer therapy by Therrien and Casini et al., platinum-based SCCs have garnered significant interest, owing to their unique advantages in antitumor therapy. These platinum-based SCCs, which enhance antitumor efficacy, are considered prominent candidates for cancer therapies owing to their desirable properties, such as potent antitumor activity, exceptionally low systemic toxicity, active tumor-targeting ability, and enhanced cellular uptake. Furthermore, diverse diagnostic and therapeutic modalities (e.g., chemotherapy, photothermal therapy, and photodynamic therapy) can be integrated into a single platform based on platinum-based SCCs for cancer therapy. Consequently, herein, we summarize our recent research on platinum-based SCCs for synergistic cancer therapy with particular emphasis on the cooperative interplay between different therapeutic methods. In the Conclusions section, we present the key advancements achieved on the basis of our research findings and propose future directions that may significantly impact the field.


Asunto(s)
Complejos de Coordinación , Neoplasias , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/química , Neoplasias/tratamiento farmacológico , Platino (Metal)/química
7.
Nat Commun ; 15(1): 3050, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594237

RESUMEN

Supramolecular polymeric materials have exhibited attractive features such as self-healing, reversibility, and stimuli-responsiveness. However, on account of the weak bonding nature of most noncovalent interactions, it remains a great challenge to construct supramolecular polymeric materials with high robustness. Moreover, high usage of supramolecular units is usually necessary to promote the formation of robust supramolecular polymeric materials, which restrains their applications. Herein, we describe the construction of highly robust supramolecular polymer networks by using only a tiny amount of metallacycles as the supramolecular crosslinkers. A norbornene ring-opening metathesis copolymer with a 120° dipyridine ligand is prepared and self-assembled with a 60° or 120° Pt(II) acceptor to fabricate the metallacycle-crosslinked polymer networks. With only 0.28 mol% or less pendant dipyridine units to form the metallacycle crosslinkers, the mechanical properties of the polymers are significantly enhanced. The tensile strengths, Young's moduli, and toughness of the reinforced polymers reach up to more than 20 MPa, 600 MPa, and 150 MJ/m3, respectively. Controllable destruction and reconstruction of the metallacycle-crosslinked polymer networks are further demonstrated by the sequential addition of tetrabutylammonium bromide and silver triflate, indicative of good stimuli-responsiveness of the networks. These remarkable performances are attributed to the thermodynamically stable, but dynamic metallacycle-based supramolecular coordination complexes that offer strong linkages with good adaptive characteristics.

8.
J Am Chem Soc ; 146(18): 12547-12555, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656766

RESUMEN

Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.

9.
Angew Chem Int Ed Engl ; 63(23): e202405761, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587998

RESUMEN

Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron-ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.

10.
J Am Chem Soc ; 146(17): 11679-11693, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482849

RESUMEN

Lipid nanoparticles (LNPs)-based messenger RNA (mRNA) therapeutics have emerged with promising potentials in the fields of infectious diseases, cancer vaccines, and protein replacement therapies; however, their therapeutic efficacy and safety can still be promoted by the optimization of LNPs formulations. Unfortunately, current LNPs suffer from increased production of reactive oxygen species during translation, which leads to a decreased translation efficiency and the onset of inflammation and other side effects. Herein, we synthesize a lipid-modified poly(guanidine thioctic acid) polymer to fabricate novel LNPs for mRNA vaccines. The acquired G-LNPs significantly promote the translation efficiency of loaded mRNA and attenuate inflammation after vaccination through the elimination of reactive oxygen species that are responsible for translational inhibition and inflammatory responses. In vivo studies demonstrate the excellent antitumor efficacy of the G-LNPs@mRNA vaccine, and two-dose vaccination dramatically increases the population and infiltration of cytotoxic T cells due to the intense antitumor immune responses, thus generating superior antitumor outcomes compared with the mRNA vaccine prepared from traditional LNPs. By synergy with immune checkpoint blockade, the tumor inhibition of G-LNPs@mRNA is further boosted, indicating that G-LNPs-based mRNA vaccines will be powerful and versatile platforms to combat cancer.


Asunto(s)
Vacunas contra el Cáncer , Lípidos , Liposomas , Nanopartículas , ARN Mensajero , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Nanopartículas/química , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/inmunología , Lípidos/química , Humanos , Ácido Tióctico/química , Ácido Tióctico/farmacología , Polímeros/química , Guanidinas/química , Guanidinas/farmacología , Línea Celular Tumoral
11.
Adv Sci (Weinh) ; 11(20): e2305382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493499

RESUMEN

Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by ß-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia , Nanomedicina , Polímeros , Microambiente Tumoral , Inmunoterapia/métodos , Ratones , Animales , Nanomedicina/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Polímeros/química , Piroptosis/efectos de los fármacos , Nanopartículas/química , Modelos Animales de Enfermedad , Neoplasias/terapia , Neoplasias/inmunología , beta-Ciclodextrinas/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Imidazoles , Isoindoles
12.
iScience ; 27(3): 109070, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375216

RESUMEN

Combination chemotherapy has shown considerable promise for cancer therapy. However, the hydrophobicity of chemotherapeutic agents and the difficulties of precise drug co-administration severely hinder the development of combination chemotherapy. Herein, we develop a polymeric drug delivery system (D-PTA-CD) to provide robust loading capacity, glutathione-responsive drug release, and precise combination therapy. The vehicle is prepared based on poly(thioctic acid) (PTA) polymers using DM1, a chemotherapeutic agent, as the initiator to endow the vehicle with cancer-inhibiting activity. ß-cyclodextrins are incorporated into the side chains to enhance drug loading capacity via host-guest interactions. Attributing to the sufficient disulfide bond on the backbone, D-PTA-CD exhibits accelerated drug release triggered by elevated glutathione levels. Doxorubicin (DOX) and camptothecin (CPT) are encapsulated by D-PTA-CD to afford the combination chemotherapy nanoparticles (NP), DOX-NP, and CPT-NP, respectively, which exhibit significant synergetic anti-cancer effects, highlighting the enormous potential of D-PTA-CD as a versatile drug delivery platform for cancer combination chemotherapy.

13.
Chem Soc Rev ; 53(6): 3167-3204, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38385584

RESUMEN

Owing to their capacity for dynamically linking two or more functional molecules, supramolecular coordination complexes (SCCs), exemplified by two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, have gained increasing significance in biomedical applications. However, their inherent hydrophobicity and self-assembly driven by heavy metal ions present common challenges in their applications. These challenges can be overcome by enhancing the aqueous solubility and in vivo circulation stability of SCCs, alongside minimizing their side effects during treatment. Addressing these challenges is crucial for advancing the fundamental research of SCCs and their subsequent clinical translation. In this review, drawing on extensive contemporary research, we offer a thorough and systematic analysis of the strategies employed by SCCs to surmount these prevalent yet pivotal obstacles. Additionally, we explore further potential challenges and prospects for the broader application of SCCs in the biomedical field.

14.
Angew Chem Int Ed Engl ; 63(13): e202317947, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38298087

RESUMEN

Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.

15.
Angew Chem Int Ed Engl ; 63(14): e202316323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38317057

RESUMEN

We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Plásmidos , ADN , Poliaminas
16.
Chem Soc Rev ; 53(3): 1592-1623, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38167687

RESUMEN

Supramolecular chemistry combines the strength of molecular assembly via various molecular interactions. Hydrogen bonding facilitated self-assembly with the advantages of directionality, specificity, reversibility, and strength is a promising approach for constructing advanced supramolecules. There are still some challenges in hydrogen bonding based supramolecular polymers, such as complexity originating from tautomerism of the molecular building modules, the assembly process, and structure versatility of building blocks. In this review, examples are selected to give insights into multiple hydrogen bonding driven emerging supramolecular architectures. We focus on chiral supramolecular assemblies, multiple hydrogen bonding modules as stimuli responsive sources, interpenetrating polymer networks, multiple hydrogen bonding assisted organic frameworks, supramolecular adhesives, energy dissipators, and quantitative analysis of nano-adhesion. The applications in biomedical materials are focused with detailed examples including drug design evolution for myotonic dystrophy, molecular assembly for advanced drug delivery, an indicator displacement strategy for DNA detection, tissue engineering, and self-assembly complexes as gene delivery vectors for gene transfection. In addition, insights into the current challenges and future perspectives of this field to propel the development of multiple hydrogen bonding facilitated supramolecular materials are proposed.


Asunto(s)
Materiales Biocompatibles , Polímeros , Enlace de Hidrógeno , Polímeros/química
17.
Angew Chem Int Ed Engl ; 63(8): e202318245, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38165147

RESUMEN

The length and mode of conjugation directly affect the molecular electronic structure, which has been extensively studied in through-bond conjugation (TBC) systems. Corresponding research greatly promotes the development of TBC-based luminophores. However, how the length and mode of through-space conjugation (TSC), one kind of weak interaction, influence the photophysical properties of non-conjugated luminophores remains a relatively unexplored field. Here, we unveil a non-linear relationship between TSC length and emission characteristics in non-conjugated systems, in contrast to the reported proportional correlation in TBC systems. More specifically, oligo(phenylene methylene)s (OPM[4]-OPM[7]) exhibit stronger TSC and prominent blue clusteroluminescence (CL) (≈440 nm) compared to shorter counterparts (OPM[2] and OPM[3]). OPM[6] demonstrates the highest solid-state quantum yield (40 %), emphasizing the importance of balancing flexibility and rigidity. Further theoretical calculations confirmed that CL of these oligo(phenylene methylene)s was determined by stable TSC derived from the inner rigid Diphenylmethane (DPM) segments within the oligomers instead of the outer ones. This discovery challenges previous assumptions and adds a new dimension to the understanding of TSC-based luminophores in non-conjugated systems.

18.
ACS Appl Mater Interfaces ; 16(5): 6614-6622, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38276951

RESUMEN

The development of adsorbents with robust molecular discrimination capabilities for halogenated organic compounds (HOCs) holds significant importance due to their potential in adsorptive separation and mitigation of associated health risks. In this study, we report a molecular discrimination behavior based on crystalline hybrid macrocyclic arene H, offering precise capture of cis-trans isomers and length-selective separation of HOCs. The activated H crystals (Hα) demonstrate exceptional discrimination and separation performance by selectively capturing trans-1,2-dichloroethylene (trans-DCE) from cis/trans-isomer mixtures with a high selectivity of 98.8%. Evidenced by single-crystal X-ray diffraction and density functional theory (DFT) calculations, this high adsorption selectivity arises from the formation of more stable complex crystals between H and the preferred guest trans-DCE. Moreover, Hα exhibits the ability to selectively trap size-matched 1,2-dibromoethane (DBE) from mixtures of alkylene dibromides with varying alkane-chain lengths, although their capture and separation are recognized to be difficult as a consequence of low-polarity bonds. The solid-state transformations between guest-free and guest-containing Hα crystals indicate their recyclability, showcasing promising prospects for potential applications.

19.
J Am Chem Soc ; 146(1): 1109-1121, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38141046

RESUMEN

The energy dissipative features of hydrogen bonds under conditions of mechanical strain have provided an ongoing incentive to explore hydrogen bonding units for the purpose of controlling and customizing the mechanical properties of polymeric materials. However, there remains a need for hydrogen bond units that (1) possess directionality, (2) provide selectivity, (3) dissipate energy effectively, and (4) can be incorporated readily into polymeric materials to regulate their mechanical properties. Here, we report mechanically interlocked hydrogen bond units that incorporate multiple hydrogen bonds within a [2]catenane structure. The conformational flexibility and associated spatial folding characteristics of the [2]catenane units allow for molecular scale motion under external stress, while the interlocked structure serves as a pivot that maintains the directionality and selectivity of the resultant hydrogen bonding units. When incorporated into polymers, these interlocked hydrogen bond motifs serve to strengthen and toughen the resulting materials. This study not only presents a novel hydrogen bond unit for creating polymeric materials with improved mechanical properties but also underscores the unique opportunities that mechanically interlocked hydrogen bond structures may provide across a diverse range of applications.

20.
Chem Commun (Camb) ; 59(96): 14265-14268, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961865

RESUMEN

A photo-responsive host-guest molecular recognition between a cationic pillar[6]arene host and an arylazopyrazole derived guest was established. Based on this novel recognition motif, a photo-controllable supra-amphiphile was constructed. The spontaneous aggregation can be reversibly controlled by irradiation with UV (365 nm) and green light (520 nm), leading to a switch between spherical nanoparticles and vesicle-like aggregates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...