Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(2): uhac259, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37601702

RESUMEN

Mango (Mangifera indica L.) is an important fruit crop in tropical and subtropical countries associated with many agronomic and horticultural problems, such as susceptibility to pathogens, including powdery mildew and anthracnose, poor yield and quality, and short shelf life. Conventional breeding techniques exhibit significant limitations in improving mango quality due to the characteristics of long ripening, self-incompatibility, and high genetic heterozygosity. In recent years, much emphasis has been placed on identification of key genes controlling a certain trait through genomic association analysis and directly breeding new varieties through transgene or genotype selection of offspring. This paper reviews the latest research progress on the genome and transcriptome sequencing of mango fruit. The rapid development of genome sequencing and bioinformatics provides effective strategies for identifying, labeling, cloning, and manipulating many genes related to economically important traits. Preliminary verification of the functions of mango genes has been conducted, including genes related to flowering regulation, fruit development, and polyphenol biosynthesis. Importantly, modern biotechnology can refine existing mango varieties to meet the market demand with high economic benefits.

2.
BMC Plant Biol ; 23(1): 320, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316788

RESUMEN

BACKGROUND: The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS: In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS: Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.


Asunto(s)
Ficus , Poligalacturonasa , Poligalacturonasa/genética , Ficus/genética , Frutas/genética , Hidrolasas
3.
PeerJ ; 10: e13798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898939

RESUMEN

The auxin response factor (ARF) combines with AuxREs cis-acting elements in response to auxin to regulate plant development. To date, no comprehensive analysis of ARF genes expressed during fruit development has been conducted for common fig (Ficus carica L.). In this study, members of the FcARF gene family were screened, identified in the fig genome database and their features characterized using bioinformatics. Twenty FcARF genes were clustered into three classes, with almost similar highly conserved DBD (B3-like DNA binding domain), AUX/IAA (auxin/indole-3-acetic acid gene family) and MR domain structure among class members. Analysis of amino acid species in MR domain revealed 10 potential transcription activators and 10 transcription inhibitors, and 17 FcARF members were predicted to be located in the nucleus. DNA sequence analysis showed that the ARF gene family consisted of 4-25 exons, and the promoter region contained 16 cis-acting elements involved in stress response, hormone response and flavonoid biosynthesis. ARF genes were expressed in most tissues of fig, especially flower and peel. Transcriptomics analysis results showed that FcARF2, FcARF11 and FcARF12, belonging to class-Ia, were stably and highly expressed in the early development stage of flower and peel of 'Purple peel' fig. However, their expression levels decreased after maturity. Expression of class-Ic member FcARF3 conformed to the regularity of fig fruit development. These four potential transcription inhibitors may regulate fruit growth and development of 'Purple Peel' fig. This study provides comprehensive information on the fig ARF gene family, including gene structure, chromosome position, phylogenetic relationship and expression pattern. Our work provides a foundation for further research on auxin-mediated fig fruit development.


Asunto(s)
Ficus , Ficus/genética , Frutas/genética , Filogenia , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica
4.
Genes (Basel) ; 13(5)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35627230

RESUMEN

Juice sac granulation (a physiological disorder) leads to large postharvest losses of pomelo (Citrus maxima). Previous studies have shown that juice sac granulation is closely related to lignin accumulation, while the molecular mechanisms underlying this disorder remain elusive in pomelo. Our results showed that the lignin content in NC (near the core) and FC (far away from the core) juice sacs overall increased from 157 DPA (days post anthesis) to 212 DPA and reached a maximum at 212 DPA. Additionally, the lignin content of NC juice sacs was higher than that of FC juice sacs. In this study, we used transcriptome-based weighted gene co-expression network analysis (WGCNA) to address how lignin formation in NC and FC juice sacs is generated during the development of pomelo. After data assembly and bioinformatic analysis, we found a most correlated module (black module) to the lignin content, then we used the 11 DEGs in this module as hub genes for lignin biosynthesis. Among these DEGs, PAL (phenylalanine ammonia lyase), HCT (hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase), 4CL2 (4-coumarate: CoA ligase), C4H (cinnamate 4-hydroxylase), C3'H (p-coumarate 3-hydroxylase), and CCoAOMT1 (caffeoyl CoA 3-Omethyltransferase) were the most distinct DEGs in granulated juice sacs. Co-expression analysis revealed that the expression patterns of several transcription factors such as MYB, NAC, OFP6, and bHLH130 are highly correlated with lignin formation. In addition, the expression patterns of the DEGs related to lignin biosynthesis and transcription factors were validated by qRT-PCR, and the results were highly concordant with the RNA-seq results. These results would be beneficial for further studies on the molecular mechanism of lignin accumulation in pomelo juice sacs and would help with citrus breeding.


Asunto(s)
Citrus , Lignina , Citrus/genética , Citrus/metabolismo , Coenzima A , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Lignina/genética , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Front Plant Sci ; 12: 730692, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691109

RESUMEN

The basic helix-loop-helix (bHLH) transcription factor family is the second largest transcription factor family in plants, and participates in various plant growth and development processes. A total of 118 bHLH genes were identified from fig (Ficus carica L.) by whole-genome database search. Phylogenetic analysis with Arabidopsis homologs divided them into 25 subfamilies. Most of the bHLHs in each subfamily shared a similar gene structure and conserved motifs. Seventy-two bHLHs were found expressed at fragments per kilobase per million mapped (FPKM) > 10 in the fig fruit; among them, 15 bHLHs from eight subfamilies had FPKM > 100 in at least one sample. bHLH subfamilies had different expression patterns in the female flower tissue and peel during fig fruit development. Comparing green and purple peel mutants, 13 bHLH genes had a significantly different (≥ 2-fold) expression. Light deprivation resulted in 68 significantly upregulated and 22 downregulated bHLH genes in the peel of the fruit. Sixteen bHLH genes in subfamily III were selected by three sets of transcriptomic data as candidate genes related to anthocyanin synthesis. Interaction network prediction and yeast two-hybrid screening verified the interaction between FcbHLH42 and anthocyanin synthesis-related genes. The transient expression of FcbHLH42 in tobacco led to an apparent anthocyanin accumulation. Our results confirm the first fig bHLH gene involved in fruit color development, laying the foundation for an in-depth functional study on other FcbHLH genes in fig fruit quality formation, and contributing to our understanding of the evolution of bHLH genes in other horticulturally important Ficus species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...