Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 584-593, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38417439

RESUMEN

Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Humanos , Femenino , Proteína BRCA2/genética , Pruebas Genéticas , Mutación Missense/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Células Germinativas/patología , ADN
2.
Cancer Res ; 83(15): 2557-2571, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37253112

RESUMEN

Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region. The deleterious variants conferred sensitivity to cisplatin and olaparib and disrupted formation of RAD51C/XRCC3 and RAD51B/RAD51C/RAD51D/XRCC2 complexes. Computational analysis indicated the deleterious variant effects were consistent with structural effects on ATP-binding to RAD51C. A subset of the variants displayed similar effects on RAD51C activity in reconstituted human RAD51C-depleted cancer cells. Case-control association studies of deleterious variants in women with breast and ovarian cancer and noncancer controls showed associations with moderate breast cancer risk [OR, 3.92; 95% confidence interval (95% CI), 2.18-7.59] and high ovarian cancer risk (OR, 14.8; 95% CI, 7.71-30.36), similar to protein-truncating variants. This functional data supports the clinical classification of inactivating RAD51C missense variants as pathogenic or likely pathogenic, which may improve the clinical management of variant carriers. SIGNIFICANCE: Functional analysis of the impact of a large number of missense variants on RAD51C function provides insight into RAD51C activity and information for classification of the cancer relevance of RAD51C variants.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Neoplasias Ováricas , Femenino , Humanos , Adenosina Trifosfato , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Mutación Missense , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
3.
J Clin Oncol ; 41(9): 1703-1713, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36623243

RESUMEN

PURPOSE: To estimate the risk of contralateral breast cancer (CBC) among women with germline pathogenic variants (PVs) in ATM, BRCA1, BRCA2, CHEK2, and PALB2. METHODS: The study population included 15,104 prospectively followed women within the CARRIERS study treated with ipsilateral surgery for invasive breast cancer. The risk of CBC was estimated for PV carriers in each gene compared with women without PVs in a multivariate proportional hazard regression analysis accounting for the competing risk of death and adjusting for patient and tumor characteristics. The primary analyses focused on the overall cohort and on women from the general population. Secondary analyses examined associations by race/ethnicity, age at primary breast cancer diagnosis, menopausal status, and tumor estrogen receptor (ER) status. RESULTS: Germline BRCA1, BRCA2, and CHEK2 PV carriers with breast cancer were at significantly elevated risk (hazard ratio > 1.9) of CBC, whereas only the PALB2 PV carriers with ER-negative breast cancer had elevated risks (hazard ratio, 2.9). By contrast, ATM PV carriers did not have significantly increased CBC risks. African American PV carriers had similarly elevated risks of CBC as non-Hispanic White PV carriers. Among premenopausal women, the 10-year cumulative incidence of CBC was estimated to be 33% for BRCA1, 27% for BRCA2, and 13% for CHEK2 PV carriers with breast cancer and 35% for PALB2 PV carriers with ER-negative breast cancer. The 10-year cumulative incidence of CBC among postmenopausal PV carriers was 12% for BRCA1, 9% for BRCA2, and 4% for CHEK2. CONCLUSION: Women diagnosed with breast cancer and known to carry germline PVs in BRCA1, BRCA2, CHEK2, or PALB2 are at substantially increased risk of CBC and may benefit from enhanced surveillance and risk reduction strategies.


Asunto(s)
Neoplasias de la Mama , Predisposición Genética a la Enfermedad , Femenino , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Negro o Afroamericano/genética , Negro o Afroamericano/estadística & datos numéricos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/etnología , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Quinasa de Punto de Control 2/genética , Proteína del Grupo de Complementación N de la Anemia de Fanconi/genética , Genes BRCA2 , Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal , Heterocigoto , Blanco/genética , Blanco/estadística & datos numéricos
4.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168194

RESUMEN

Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary: Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.

5.
Clin Cancer Res ; 28(17): 3742-3751, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736817

RESUMEN

PURPOSE: The identification of variants of uncertain significance (VUS) in the BRCA1 and BRCA2 genes by hereditary cancer testing poses great challenges for the clinical management of variant carriers. The ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) variant classification framework, which incorporates multiple sources of evidence, has the potential to establish the clinical relevance of many VUS. We sought to classify the clinical relevance of 133 single-nucleotide substitution variants encoding missense variants in the DNA-binding domain (DBD) of BRCA2 by incorporating results from a validated functional assay into an ACMG/AMP-variant classification model from a hereditary cancer-testing laboratory. EXPERIMENTAL DESIGN: The 133 selected VUS were evaluated using a validated homology-directed double-strand DNA break repair (HDR) functional assay. Results were combined with clinical and genetic data from variant carriers in a rules-based variant classification model for BRCA2. RESULTS: Of 133 missense variants, 44 were designated as non-functional and 89 were designated as functional in the HDR assay. When combined with genetic and clinical information from a single diagnostic laboratory in an ACMG/AMP-variant classification framework, 66 variants previously classified by the diagnostic laboratory were correctly classified, and 62 of 67 VUS (92.5%) were reclassified as likely pathogenic (n = 22) or likely benign (n = 40). In total, 44 variants were classified as pathogenic/likely pathogenic, 84 as benign/likely benign, and 5 remained as VUS. CONCLUSIONS: Incorporation of HDR functional analysis into an ACMG/AMP framework model substantially improves BRCA2 VUS re-classification and provides an important tool for determining the clinical relevance of individual BRCA2 VUS.


Asunto(s)
Neoplasias de la Mama , Genes BRCA2 , Femenino , Humanos , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Variación Genética
6.
Mol Psychiatry ; 26(12): 7454-7464, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34535768

RESUMEN

Bipolar disorder (BD) and obesity are highly comorbid. We previously performed a genome-wide association study (GWAS) for BD risk accounting for the effect of body mass index (BMI), which identified a genome-wide significant single-nucleotide polymorphism (SNP) in the gene encoding the transcription factor 7 like 2 (TCF7L2). However, the molecular function of TCF7L2 in the central nervous system (CNS) and its possible role in the BD and BMI interaction remained unclear. In the present study, we demonstrated by studying human induced pluripotent stem cell (hiPSC)-derived astrocytes, cells that highly express TCF7L2 in the CNS, that the BD-BMI GWAS risk SNP is associated with glucocorticoid-dependent repression of the expression of a previously uncharacterized TCF7L2 transcript variant. That transcript is a long non-coding RNA (lncRNA-TCF7L2) that is highly expressed in the CNS but not in peripheral tissues such as the liver and pancreas that are involved in metabolism. In astrocytes, knockdown of the lncRNA-TCF7L2 resulted in decreased expression of the parent gene, TCF7L2, as well as alterations in the expression of a series of genes involved in insulin signaling and diabetes. We also studied the function of TCF7L2 in hiPSC-derived astrocytes by integrating RNA sequencing data after TCF7L2 knockdown with TCF7L2 chromatin-immunoprecipitation sequencing (ChIP-seq) data. Those studies showed that TCF7L2 directly regulated a series of BD risk genes. In summary, these results support the existence of a CNS-based mechanism underlying BD-BMI genetic risk, a mechanism based on a glucocorticoid-dependent expression quantitative trait locus that regulates the expression of a novel TCF7L2 non-coding transcript.


Asunto(s)
Trastorno Bipolar , Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , ARN Largo no Codificante , Trastorno Bipolar/genética , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Glucocorticoides , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA