Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Robot Surg ; 18(1): 176, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630145

RESUMEN

The objective is to preliminary evaluated postoperative leukocyte counts as a surrogate for the surgical stress response in NSCLC patients who underwent RATS or VATS for further prospective analyses with proper assessment of surgical stress response and tissue trauma. We retrospectively analyzed patients with stageI-IIIA NSCLC who underwent RATS or VATS at a hospital between 8 May 2020 and 31 December 2021. Analysis of leukocytes (including neutrophils and lymphocytes) and albumin on postoperative days (PODs) 1 and 3 in patients with NSCLC treated with RATS or VATS after propensity score matching (PSM). In total, 1824 patients (565 RATS and 1259 VATS) were investigated. The two MIS groups differed significantly with regard to operative time (p < 0.001), chronic lung disease (p < 0.001), the type of pulmonary resection (p < 0.001), the excision site of lobectomy (p = 0.004), and histology of the tumor (p = 0.028). After PSM, leukocyte and neutrophil levels in the RATS group were lower than those in the VATS group on PODs 1 and 3, with those on POD 3 (p < 0.001) being particularly notable. While lymphocyte levels in the RATS group were significantly lower than those in the VATS group only at POD 1 (p = 0.016). There was no difference in albumin levels between the RATS and VATS groups on PODs 1 and 3. The surgical stress response and tissue trauma was less severe in NSCLC patients who underwent RATS than in those who underwent VATS, especially reflected in the neutrophils of leukocytes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Cirugía Torácica Asistida por Video , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Recuento de Leucocitos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Albúminas , Neoplasias Pulmonares/cirugía
2.
Comput Biol Med ; 173: 108338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531252

RESUMEN

BACKGROUND: Thrombotic diseases are the leading causes of death worldwide, urging for improvements in treatment strategies. Dahuang Zhechong pill (DHZCP) is a traditional Chinese medicine widely used for treating thrombotic diseases; however, the underlying mechanisms remain unclear. This study aimed to explore the potential mechanisms of DHZCP in treating thrombosis with a focus on bioinformatics and miRNAs. METHODS: We used network pharmacology to explore the targets of thrombosis treated with DHZCP and performed microarray analysis to acquire miRNA profiles and predict the target genes in thrombin-stimulated MEG-01 cells treated with DHZCP. Based on the overlapping of targets, we carried out a component-target-miRNA network and enrichment analysis and validated the selected miRNAs and mRNAs using quantitative reverse transcription-polymerase chain reaction. RESULTS: Our data showed 850 targets of 230 active ingredients of DHZCP and 1214 thrombosis-related genes; 235 targets were common. We identified 32 miRNAs that were regulated by thrombin stimulation but regulated reversely by DHZCP treatment in MEG-01 cells, and predicted 1846 targets with function annotation. We analyzed conjointly 23 integrating targets from network pharmacology and microarray. HIF1A, PIK3CA, MAPK1 and BCL2L1 emerged as key nodes in the network diagrams. We confirmed the differential expression of seven miRNAs, one mRNA (BCL2L1) and platelet surface protein. CONCLUSIONS: This study showed that miRNAs and their targets, such as BCL2L1, played crucial roles in platelet activation during DHZCP intervention in thrombosis, highlighting their potential to alleviate platelet activation and increase cell apoptosis. The study's findings could help develop new strategies for improving thrombosis treatment.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , MicroARNs/genética , Trombina/farmacología , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Análisis por Micromatrices
3.
iScience ; 27(1): 108645, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38155775

RESUMEN

Aerobic glycolysis is a pivotal hallmark of cancers, including colorectal cancer. Evidence shows glycolytic enzymes are regulated by post-translational modifications (PTMs), thereby affecting the Warburg effect and reprograming cancer metabolism. Lysine lactylation is a PTM reported in 2019 in histones. In this study, we identified protein lactylation in FHC cells and SW480 colon cancer cells through mass spectrometry. Totally, 637 lysine lactylation sites in 444 proteins were identified in FHC and SW480 cells. Lactylated proteins were enriched in the glycolysis pathway, and we identified lactylation sites in phosphofructokinase, platelet (PFKP) lysine 688 and aldolase A (ALDOA) lysine 147. We also showed that PFKP lactylation directly attenuated enzyme activity. Collectively, our study presented a resource to investigate proteome-wide lactylation in SW480 cells and found PFKP lactylation led to activity inhibition, indicating that lactic acid and lactylated PFKP may form a negative feedback pathway in glycolysis and lactic acid production.

4.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37242427

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a malignant tumor associated with high morbidity and mortality. Therefore, it is of great importance to develop effective prognostic models and guide clinical treatment in HCC. Protein lactylation is found in HCC tumors and is associated with HCC progression. METHODS: The expression levels of lactylation-related genes were identified from the TCGA database. A lactylation-related gene signature was constructed using LASSO regression. The prognostic value of the model was assessed and further validated in the ICGC cohort, with the patients split into two groups based on risk score. Glycolysis and immune pathways, treatment responsiveness, and the mutation of signature genes were analyzed. The correlation between PKM2 expression and the clinical characteristics was investigated. RESULTS: Sixteen prognostic differentially expressed lactylation-related genes were identified. An 8-gene signature was constructed and validated. Patients with higher risk scores had poorer clinical outcomes. The two groups were different in immune cell abundance. The high-risk group patients were more sensitive to most chemical drugs and sorafenib, while the low-risk group patients were more sensitive to some targeted drugs such as lapatinib and FH535. Moreover, the low-risk group had a higher TIDE score and was more sensitive to immunotherapy. PKM2 expression correlated with clinical characteristics and immune cell abundance in the HCC samples. CONCLUSIONS: The lactylation-related model exhibited robust predictive efficiency in HCC. The glycolysis pathway was enriched in the HCC tumor samples. A low-risk score indicated better treatment response to most targeted drugs and immunotherapy. The lactylation-related gene signature could be used as a biomarker for the effective clinical treatment of HCC.

5.
Mol Cell Proteomics ; 22(6): 100567, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172717

RESUMEN

Nasopharyngeal carcinoma (NPC), a malignant tumor distinctly characterized by ethnic and geographic distribution, is highly prevalent in Southern China and Southeast Asia. However, the molecular mechanisms of NPC have not been fully revealed at the proteomic level. In this study, 30 primary NPC samples and 22 normal nasopharyngeal epithelial tissues were collected for proteomics analysis, and a relatively complete proteomics landscape of NPC was depicted for the first time. By combining differential expression analysis, differential co-expression analysis, and network analysis, potential biomarkers and therapeutic targets were identified. Some identified targets were verified by biological experiments. We found that 17-AAG, a specific inhibitor of the identified target heat shock protein 90 (HSP90), could be a potential therapeutic drug for NPC. Finally, consensus clustering identified two NPC subtypes with specific molecular features. The subtypes and the related molecules were verified by an independent data set and may have different progression-free survival. The results of this study provide a comprehensive understanding of the proteomics molecular signatures of NPC and provide new perspectives and inspiration for prognostic determination and treatment of NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
6.
Vaccines (Basel) ; 11(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851083

RESUMEN

BACKGROUND: Ovarian cancer is the most lethal gynecological tumor, with a poor prognosis due to the lack of early symptoms, resistance to chemotherapy, and recurrence. Ferroptosis belongs to the regulated cell death family, and is characterized by iron-dependent processes. Here, comprehensive bioinformatics analysis was applied to explore a valuable prognostic model based on ferroptosis-related genes, which was further validated in clinical OC samples. METHODS: mRNA data of normal and ovarian tumor samples were obtained separately from the GTEx and TCGA databases. The least absolute shrinkage and selection operator (LASSO) cox regression was applied to construct the prognostic model based on ferroptosis-associated genes. Expression of ALOX12 in OC cell lines, as well as cell functions, including proliferation and migration, were examined. Finally, the prognostic efficiency of the model was assessed in the clinical tissues of OC patients. RESULTS: A gene signature consisting of ALOX12, RB1, DNAJB6, STEAP3, and SELENOS was constructed. The signature divided TCGA, ICGC, and GEO cohorts into high-risk and low-risk groups separately. Receiver operating characteristic (ROC) curves and independent prognostic factor analysis were carried out, and the prognostic efficacy was validated. The expression levels of ALOX12 in cell lines were examined. Inhibition of ALOX12 attenuated cell proliferation and migration in HEY cells. Moreover, the prognostic value of ALOX12 expression was examined in clinical samples of OC patients. CONCLUSION: This work constructed a novel ferroptosis-associated gene model. Furthermore, the clinical predictive role of ALOX12 was identified in OC patients, suggesting that ALOX12 might act as a potential prognostic tool and therapeutic target for OC patients.

7.
Life Sci ; 312: 121266, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473542

RESUMEN

AIMS: To explore the methylation status, function, and underlying mechanism of the imprinted gene Neuronatin (NNAT) in hepatocellular carcinoma (HCC) progression. MAIN METHODS: Immunohistochemistry (IHC) was performed to evaluate the expression of NNAT in HCC samples. Bisulfite genomic sequencing PCR (BSP) was applied to examine the methylation status of the NNAT promoter. In addition, colony formation, 5-Ethynyl-20-deoxyuridine (EdU) assays and subcutaneous xenograft nude models were used to explore the roles of NNAT in HCC cell proliferation. Furthermore, RNA-seq and phospho-specific protein microarray assays were conducted to illustrate the underlying mechanism by which NNAT regulates HCC progression. KEY FINDINGS: NNAT was obviously downregulated in HCC tissues, and its expression level was closely associated with tumor growth and patient prognosis. The downregulation of NNAT in HCC was induced by hypermethylation of CpG islands in the promoter region, and hypermethylation was correlated with overall survival of HCC. Moreover, the enforced expression of NNAT significantly inhibited HCC cell proliferation in vitro and in vivo. Transcriptome analysis showed that the alteration of NNAT expression was mainly related to dysregulation of the PI3K-Akt signaling pathway. Finally, phospho-specific antibody microarray detection further revealed that overexpressed NNAT can increase the phosphorylation levels of LKB1, Met, and elF4E and decrease the phosphorylation levels of PTEN, which are all involved in the PI3K-Akt signaling pathway. SIGNIFICANCE: Our research provides new insights into the epigenetic regulation of imprinted genes in tumorigenesis and implies that the imprinted gene NNAT may act as a prognostic biomarker and tumor suppressor in HCC.


Asunto(s)
Carcinoma Hepatocelular , Metilación de ADN , Silenciador del Gen , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Silenciador del Gen/fisiología , Modelos Animales de Enfermedad
8.
Front Genet ; 13: 873840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591851

RESUMEN

Suberoylanilide hydroxamic acid (SAHA), a famous histone deacetylase (HDAC) inhibitor, has been utilized in clinical treatment for cutaneous T-cell lymphoma. Previously, the mechanisms underlying SAHA anti-tumor activity mainly focused on acetylome. However, the characteristics of SAHA in terms of other protein posttranslational modifications (PTMs) and the crosstalk between various modifications are poorly understood. Our previous work revealed that SAHA had anti-tumor activity in nasopharyngeal carcinoma (NPC) cells as well. Here, we reported the profiles of global proteome, acetylome, and phosphoproteome of 5-8 F cells upon SAHA induction and the crosstalk between these data sets. Overall, we detected and quantified 6,491 proteins, 2,456 phosphorylated proteins, and 228 acetylated proteins in response to SAHA treatment in 5-8 F cells. In addition, we identified 46 proteins exhibiting both acetylation and phosphorylation, such as WSTF and LMNA. With the aid of intensive bioinformatics analyses, multiple cellular processes and signaling pathways involved in tumorigenesis were clustered, including glycolysis, EGFR signaling, and Myc signaling pathways. Taken together, this study highlighted the interconnectivity of acetylation and phosphorylation signaling networks and suggested that SAHA-mediated HDAC inhibition may alter both acetylation and phosphorylation of viral proteins. Subsequently, cellular signaling pathways were reprogrammed and contributed to anti-tumor effects of SAHA in NPC cells.

9.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36678534

RESUMEN

BACKGROUND: Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its radiosensitive effects in nasopharyngeal carcinoma (NPC). However, the detailed mechanism of afatinib-mediated sensitivity to radiation is still obscure in NPC. METHODS: Quantitative phosphorylated proteomics and bioinformatics analysis were performed to illustrate the global phosphoprotein changes. The activity of the CD44-Stat3 axis and Epithelial-Mesenchymal Transition (EMT)-linked markers were evaluated by Western blotting. Wound healing and transwell assays were used to determine the levels of cell migration upon afatinib combined IR treatment. Cell proliferation was tested by CCK-8 assay. A pharmacological agonist by IL-6 was applied to activate Stat3. The xenograft mouse model was treated with afatinib, radiation or a combination of afatinib and radiation to detect the radiosensitivity of afatinib in vivo. RESULTS: In the present study, we discovered that afatinib triggered global protein phosphorylation alterations in NPC cells. Further, bioinformatics analysis indicated that afatinib inhibited the CD44-Stat3 signaling and subsequent EMT process. Moreover, functional assays demonstrated that afatinib combined radiation treatment remarkably impeded cell viability, migration, EMT process and CD44-Stat3 activity in vitro and in vivo. In addition, pharmacological stimulation of Stat3 rescued radiosensitivity and biological functions induced by afatinib in NPC cells. This suggested that afatinib reversed the EMT process by blocking the activity of the CD44-Stat3 axis. CONCLUSION: Collectively, this work identifies the molecular mechanism of afatinib as a radiation sensitizer, thus providing a potentially useful combination treatment and drug target for NPC radiosensitization. Our findings describe a new function of afatinib in radiosensitivity and cancer treatment.

10.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785613

RESUMEN

Retinoic acid-inducible gene I (RIG-I) is a sensor that recognizes cytosolic double-stranded RNA derived from microbes to induce host immune response. Viruses, such as herpesviruses, deploy diverse mechanisms to derail RIG-I-dependent innate immune defense. In this study, we discovered that mouse RIG-I is intrinsically resistant to deamidation and evasion by herpes simplex virus 1 (HSV-1). Comparative studies involving human and mouse RIG-I indicate that N495 of human RIG-I dictates species-specific deamidation by HSV-1 UL37. Remarkably, deamidation of the other site, N549, hinges on that of N495, and it is catalyzed by cellular phosphoribosylpyrophosphate amidotransferase (PPAT). Specifically, deamidation of N495 enables RIG-I to interact with PPAT, leading to subsequent deamidation of N549. Collaboration between UL37 and PPAT is required for HSV-1 to evade RIG-I-mediated antiviral immune response. This work identifies an immune regulatory role of PPAT in innate host defense and establishes a sequential deamidation event catalyzed by distinct deamidases in immune evasion.IMPORTANCE Herpesviruses are ubiquitous pathogens in human and establish lifelong persistence despite host immunity. The ability to evade host immune response is pivotal for viral persistence and pathogenesis. In this study, we investigated the evasion, mediated by deamidation, of species-specific RIG-I by herpes simplex virus 1 (HSV-1). Our findings uncovered a collaborative and sequential action between viral deamidase UL37 and a cellular glutamine amidotransferase, phosphoribosylpyrophosphate amidotransferase (PPAT), to inactivate RIG-I and mute antiviral gene expression. PPAT catalyzes the rate-limiting step of the de novo purine synthesis pathway. This work describes a new function of cellular metabolic enzymes in host defense and viral immune evasion.


Asunto(s)
Amidofosforribosiltransferasa/metabolismo , Proteína 58 DEAD Box/metabolismo , Herpes Simple/enzimología , Herpesvirus Humano 1/enzimología , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Amidofosforribosiltransferasa/genética , Secuencias de Aminoácidos , Animales , Proteína 58 DEAD Box/química , Proteína 58 DEAD Box/genética , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno , Humanos , Ratones , Unión Proteica , Especificidad de la Especie , Proteínas Estructurales Virales/genética
11.
Aging (Albany NY) ; 13(5): 6982-6998, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33621955

RESUMEN

Androgen receptor (AR) and histone deacetylase 6 (HDAC6) are important targets for cancer therapy. Given that both AR antagonists and HDAC6 inhibitors modulate AR signaling, a novel AR/HDAC6 dual inhibitor is investigated for its anticancer effects in castration-resistant prostate cancer (CRPC). Zeta55 inhibits nuclear translocation of AR and suppresses androgen-induced PSA and TMPRSS2 expression. Meanwhile, Zeta55 selectively inhibits HDAC6 activity, leading to AR degradation. Zeta55 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a CRPC xenograft model. These results provide preclinical proof of principle for Zeta55 as a promising therapeutic in prostate cancer treatment.


Asunto(s)
Antagonistas de Receptores Androgénicos/farmacología , Histona Desacetilasa 6/antagonistas & inhibidores , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antagonistas de Receptores Androgénicos/química , Animales , Masculino , Ratones SCID , Antígeno Prostático Específico/efectos de los fármacos , Serina Endopeptidasas/efectos de los fármacos
12.
Front Cell Dev Biol ; 8: 577784, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324635

RESUMEN

Suberoylanilide hydroxamic acid (SAHA), a pan HDAC inhibitor, has been approved by the Food and Drug Administration (FDA) to treat cutaneous T cell lymphoma (CTCL). Nevertheless, the mechanisms underlying the therapeutic effects of SAHA on tumors are yet not fully understood. Protein phosphorylation is one of the most important means to regulate key biological processes (BPs), such as cell division, growth, migration, differentiation, and intercellular communication. Thus, investigation on the impacts of SAHA treatment on global cellular phosphorylation covering major signaling pathways deepens our understanding on its anti-tumor mechanisms. Here we comprehensively identified and quantified protein phosphorylation for the first time in nasopharyngeal carcinoma (NPC) cells upon SAHA treatment by combining tandem mass tags (TMTs)-based quantitative proteomics and titanium dioxide (TiO2)-based phosphopeptide enrichment. In total, 7,430 phosphorylation sites on 2,456 phosphoproteins were identified in the NPC cell line 5-8F, of which 1,176 phosphorylation sites on 528 phosphoproteins were significantly elevated upon SAHA treatment. Gene ontology (GO) analysis showed that SAHA influenced several BPs, including mRNA/DNA processing and cell cycle. Furthermore, signaling pathway analysis and immunoblotting demonstrated that SAHA activated tumor suppressors like p53 and Rb1 via phosphorylation and promoted cell apoptosis in NPC cells but inactivated energetic pathways such as AMPK signaling. Overall, our study indicated that SAHA exerted anti-tumor roles in NPC cells, which may serve as novel therapeutic for NPC patients.

13.
Clin Exp Metastasis ; 37(6): 703, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888119

RESUMEN

In the original publication of the article, Acknowledgements section was published incorrectly. The correct Acknowledgements is given in this Correction.

14.
Aging (Albany NY) ; 12(14): 14699-14717, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32678070

RESUMEN

Steroidogenic enzymes are crucial in prostate cancer (PCa) progression. 17ß-Hydroxysteroid dehydrogenase type 4 (HSD17B4), encoded by HSD17B4, lacks catalytic capacity in androgen metabolism. Now the detailed role and molecular mechanism of PCa development are largely unknown. Here we showed that the expression of HSD17B4 was increased in PCa tissues compared to paired paratumor tissues. HSD17B4 knockdown in PCa cells significantly suppressed its proliferation, migration and invasion, while overexpressing HSD17B4 had opposite effects. Mechanistically, we found that the protein level of HSD17B4 was regulated by its acetylation at lysine 669(K669). Dihydroxytestosterone (DHT) treatment increased HSD17B4 acetylation and then promoted its degradation via chaperone-mediated autophagy (CMA). SIRT3 directly interacted with HSD17B4 to inhibit its acetylation and enhance its stability. In addition, we identified CREBBP as a regulator of the K669 acetylation and degradation of HSD17B4, affecting PC cell proliferation, migration and invasion. Notably, in PCa tissues and paired paratumor tissues, the level of HSD17B4 was negatively correlated with its K669 acetylation. Taken together, this study identified a novel role of HSD17B4 in PCa progression and suggested that HSD17B4 and its upstream regulators may be potential therapeutic targets for PCa intervention.


Asunto(s)
Proteína-2 Multifuncional Peroxisomal/genética , Proteína-2 Multifuncional Peroxisomal/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Acetilación , Animales , Proteína de Unión a CREB/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Lisina/metabolismo , Masculino , Ratones , Ratones Noqueados , Invasividad Neoplásica/genética , Sirtuina 3/genética , Testosterona/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Clin Exp Metastasis ; 37(4): 477-487, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32613480

RESUMEN

MACC1 (metastasis associated in colon cancer 1) is a key driver that induces metastasis in colon cancer. However, the mechanisms by which MACC1 expression is transcriptionally regulated and the factors enriched at the MACC1 promoter remain largely unknown. The binding of proteins to specific DNA sites in the genome is a major determinant of genomic maintenance and the regulation of specific genes. The study herein utilized two methods to study the binding proteins of the MACC1 promoter region in colon cancer. Specifically, we adopted CRISPR-based chromatin affinity purification with mass spectrometry (CRISPR-ChAP-MS) and a biotin-streptavidin pulldown assay coupled with MS to identify the specific proteome bound to the MACC1 promoter in two colon cell lines with different metastatic potential. A total of 24 proteins were identified by CRISPR-ChAP-MS as binding to the MACC1 promoter, among which c-JUN was validated by ChIP-PCR. A total of 739 binding protein candidates were identified by biotin-streptavidin pulldown assays coupled with MS, of which HNF4G and PAX6 were validated and compared for their binding to the same promoter sites in the two cell lines. Our studies suggest distinctive proteomic factors associated with the MACC1 promoter in colon cells with different metastatic potential. The dynamic regulatory factors accumulated at the promoter of MACC1 may provide novel insights into the regulatory mechanisms of MACC1 transcription.


Asunto(s)
Neoplasias del Colon/genética , Factor Nuclear 4 del Hepatocito/genética , Metástasis Linfática/genética , Factor de Transcripción PAX6/genética , Transactivadores/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias del Colon/patología , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática/patología , Regiones Promotoras Genéticas/genética
16.
Cell Death Dis ; 11(2): 89, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015333

RESUMEN

Abnormal expression of the E3 ubiquitin ligase A20 has been found in some malignant cancers, including hepatocellular carcinoma (HCC). Here, we discovered that A20 is an E3 ubiquitin ligase for phosphofructokinase, liver type (PFKL) in HCC A20 interacts with PFKL and promotes its degradation, therefore inhibiting glycolysis in HCC cell lines. Downregulation of A20 in HCC cells promotes proliferation, migration, and glycolysis, all of which can be inhibited by targeting PFKL with RNA interference. Importantly, A20 is downregulated in advanced HCC tissues and inversely correlated with PFKL expression. Thus, our findings establish A20 as a critical regulator of glycolysis and reveal a novel mechanism for A20 in tumor suppression and PFKL regulation. Given that an increased level of glycolysis is linked with HCC, this study also identifies potential therapeutic targets for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfofructoquinasa-1 Tipo Hepático/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Fosfofructoquinasa-1 Tipo Hepático/genética , Unión Proteica , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteínas Supresoras de Tumor/genética , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Cancer ; 10(22): 5315-5323, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632476

RESUMEN

Purpose: The aim of this study was to evaluate the diagnostic value of S100A9 and tenascin-c (TNC) levels as colorectal cancer (CRC) biomarkers in several ways, including through screening tests, differentiation tests, combination with existing biomarkers (CEA and CA19-9), and serum level measurements before and after surgery. Materials and Methods: In this case-control study, S100A9 and TNC serum levels were measured in 460 participants: 258 CRC patients, 99 patients with benign colonic disease (BCD) and 103 healthy donors (HD). Results: The serum levels of S100A9 were 22.32 (14.88-29.55) ng/ml, 10.02 (5.83-14.15) ng/ml and 10.05 (7.68-15.34) ng/ml in the CRC, BCD and HD groups, respectively. The serum levels of TNC were 4.30 (2.12-6.04) ng/ml, 1.60 (1.06-2.30) ng/ml and 2.00 (1.37-3.00) ng/ml in the CRC, BCD and HD groups, respectively. Significantly higher levels of both biomarkers (S100A9 and TNC) were found in CRC patients (both p<0.001). Both S100A9 and TNC levels were superior to CEA and CA19-9 levels as CRC diagnostic biomarkers; the combination of S100A9, TNC and CEA levels was an excellent biomarker with 79.8% sensitivity and 89.6% specificity. The serum levels of S100A9 and TNC in CRC patients were significantly lower after surgery than before surgery (p<0.01). Conclusion: S100A9 and TNC levels could serve as diagnostic biomarkers of colorectal cancer.

18.
J Cancer ; 10(18): 4368-4379, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31413757

RESUMEN

S-Adenosylmethionine (SAMe) is a kind of common liver-protection medicine. Recent studies have shown that SAMe has the inhibitory effects on hepatocellular carcinoma (HCC). But the specific mechanism has not been elucidated. Here, we examine the effects and relevant mechanisms of SAMe on human hepatocellular carcinoma cell HepG2 and mouse hepatocyte AML12. We applied the technique of RNA sequencing (RNA-Seq) to identify the differentially expressed genes between HepG2 cells which were treated with SAMe or not. And western blot and Quantitative RT-PCR was used to confirm some of these genes. To investigate the response to SAMe treatment, cell proliferation assay (MTS) and flow cytometry-based assays were carried out. A total of 472 SAMe-related genes were identified by RNA-Seq. We found that differentially expressed genes were enriched in cell cycle related signaling pathway significantly by the KEGG and GO Pathway enrichment analysis. Through the construction of protein-protein interaction network, we observed the module associated with cell cycle is in the core of the whole network. All these results implied that cell cycle pathway may be very important in the regulation of SAMe effected on HepG2 cells. Then the RNA-Seq-characterized genes involved in cell cycle (MCM3, MCM4, and E2F1) were confirmed by Western blot and Quantitative RT-PCR in HepG2 and AML12 cells. MTS analysis showed that SAMe could diminish cell proliferation. And flow cytometry-based assays indicated that treatment with SAMe altered cell cycle kinetic S phase cell cycle arrest. Altogether, our data uncovered the evidence of the antiproliferative action of SAMe in liver cells, and SAMe could lead to cell cycle inhibition by up-regulating MCM3, MCM4 and E2F1 expression. It provided an important theoretical basis for the clinical chemoprevention and treatment in HCC of SAMe.

19.
Biol Open ; 8(5)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31036754

RESUMEN

To investigate the global proteomic profiles of vascular endothelial cells (VECs) in the tumor microenvironment and antiangiogenic therapy for colorectal cancer (CRC), matched pairs of normal (NVECs) and tumor-associated VECs (TVECs) were purified from CRC tissues by laser capture microdissection and subjected to iTRAQ-based quantitative proteomics analysis. Here, 216 differentially expressed proteins (DEPs) were identified and used for bioinformatics analysis. Interestingly, these proteins were implicated in epithelial mesenchymal transition (EMT), ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, angiogenesis and HIF-1 signaling pathway, which may play important roles in CRC angiogenesis. Among these DEPs we found that Tenascin-C (TNC) was upregulated in TVECs of CRC and correlated with CRC multistage carcinogenesis and metastasis. Furthermore, the reduction of tumor-derived TNC could attenuate human umbilical vein endothelial cell (HUVEC) proliferation, migration and tube formation through ITGB3/FAK/Akt signaling pathway. Based on the present work, we provided a large-scale proteomic profiling of VECs in CRC with quantitative information, a certain number of potential antiangiogenic targets and a novel vision in the angiogenesis bio-mechanism of CRC.

20.
J Cancer ; 10(2): 305-312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719124

RESUMEN

Background: The radioresistance of nasopharyngeal carcinoma (NPC) was the main cause of radiotherapy failure and it was still a challenge in the treatment of advanced NPC patients. Previous clinical studies demonstrated that sodium glycididazole(CMNA) can enhance the radiosensitivity of NPC, but the corresponding cellular mechanisms or processes remains largely unclear. Methods: To clarify the radiosensitizing effects of CMNA on NPC cells and reveal its cellular mechanisms, its effect on cell survival of NPC cells was assessed by MTT and clonogenic assay, with or without radiation. The potential cellular mechanisms such as cell cycle distribution, apoptosis and DNA damage were assessed. A retrospective analysis of the outcome of patients with III-IV stage NPC who undergo same radiochemotherapy with or without concurrent CMNA treatment was performed to elucidate the role of CMNA in the improvement of the curative effects. Results: The treatment with CMNA at the concentration lower or close to the clinical dosage had little effect on cell survival, cell cycle distribution and a weak effect on DNA damage and cell apoptosis of NPC cells. The combination of CMNA and radiation significantly increased the DNA damage and enhanced the apoptosis of NPC cells, but did not significantly alter the cell cycle distribution as compared with the irradiation (IR) alone. A total of 99 patients who underwent radiochemotherapy were categorized into those with (treatment group, n=52) and without (control group, n=47) the treatment with CMNA. The complete response rates of patients in treatment group were significantly higher than in control group. Conclusions: Our results suggested that CMNA enhance the sensitivity of the NPC cells to radiation via enhancing DNA damage and promoting cell apoptosis. It provides clues for further investigation of the molecular mechanism of the radiosensitization of CMNA on NPC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA