Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2309865, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634577

RESUMEN

Copper-based bimetallic heterojunction catalysts facilitate the deep electrochemical reduction of CO2 (eCO2RR) to produce high-value-added organic compounds, which hold significant promise. Understanding the influence of copper interactions with other metals on the adsorption strength of various intermediates is crucial as it directly impacts the reaction selectivity. In this review, an overview of the formation mechanism of various catalytic products in eCO2RR is provided and highlight the uniqueness of copper-based catalysts. By considering the different metals' adsorption tendencies toward various reaction intermediates, metals are classified, including copper, into four categories. The significance and advantages of constructing bimetallic heterojunction catalysts are then discussed and delve into the research findings and current development status of different types of copper-based bimetallic heterojunction catalysts. Finally, insights are offered into the design strategies for future high-performance electrocatalysts, aiming to contribute to the development of eCO2RR to multi-carbon fuels with high selectivity.

2.
Plants (Basel) ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674527

RESUMEN

CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.

3.
Medicine (Baltimore) ; 103(4): e36745, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277518

RESUMEN

Microbiological identification is essential for appropriate treatment, but conventional methods are time-consuming and have a low sensitivity. In contrast, metagenomic next-generation sequencing (mNGS) is a culture-free and hypothesis-free technique that can detect a wide array of potential pathogens. This study aimed to reveal the overall diagnostic value of mNGS for infectious diseases of different organ systems and compare the sensitivity and specificity of mNGS with conventional methods. In a retrospective cohort study, 94 patients with mNGS results were enrolled, and clinical data were recorded and analyzed to compare the positive rate of mNGS with traditional methods including as smears, serological tests, and traditional PCR, etc. In this study, mNGS and culture were both positive in 12.77% cases and were both negative in 23.4% cases. There were positive results in 56 cases (54.26%) only by mNGS and 4 cases (4.26%) were positive only by culture. There were significant differences in sensitivity of pathogen detection between of ID and NID group for mNGS (χ2 = 10.461, P = .001)and conventional methods(χ2 = 7.963, P = .005). The positive predictive values and negative predictive values of diagnosing infectious disease by mNGS were 94.12% and 30.77%, respectively. mNGS increased the sensitivity rate by approximately 53.66% compared with that of culture (78.05% vs24.39%; χ2 = 47.248, P < .001) and decreased the specificity rate by 12.5% compared with that of culture (66.67% vs 100.0%; χ2 = 4.8, P = .028). mNGS can identify emerging or rare pathogen and further guide treatment regimens. mNGS has advantages in identifying overall pathogens and bacteria, however, there was no obvious advantage in identifying fungi, virus and tuberculosis. mNGS has higher specificity than conventional methods in identifying pathogens and advantages in detecting emerging or rare pathogens.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma , Humanos , Estudios Retrospectivos , Metagenómica , Sensibilidad y Especificidad
4.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686403

RESUMEN

The GLABROUS1 Enhancer Binding Protein (GeBP) gene family is pivotal in regulating plant growth, development, and stress responses. However, the role of GeBP in Brassica rapa remains unclear. This study identifies 20 BrGeBP genes distributed across 6 chromosomes, categorized into 4 subfamilies. Analysis of their promoter sequences reveals multiple stress-related elements, including those responding to drought, low temperature, methyl jasmonate (MeJA), and gibberellin (GA). Gene expression profiling demonstrates wide expression of BrGeBPs in callus, stem, silique, and flower tissues. Notably, BrGeBP5 expression significantly decreases under low-temperature treatment, while BrGeBP3 and BrGeBP14 show increased expression during drought stress, followed by a decrease. Protein interaction predictions suggest that BrGeBP14 homolog, At5g28040, can interact with DES1, a known stress-regulating protein. Additionally, microRNA172 targeting BrGeBP5 is upregulated under cold tolerance. These findings underscore the vital role of BrGeBPs in abiotic stress tolerance. Specifically, BrGeBP3, BrGeBP5, and BrGeBP14 show great potential for regulating abiotic stress. This study contributes to understanding the function of BrGeBPs and provides valuable insights for studying abiotic stress in B. rapa.


Asunto(s)
Brassica rapa , Sequías , Humanos , Brassica rapa/genética , Resistencia a la Sequía , Cromosomas Humanos Par 6 , Frío , Proteínas de Unión al ADN
5.
Genes (Basel) ; 14(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37628616

RESUMEN

Nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation as well as abiotic stress responses in plants. However, little is known about the NRT2 gene family in Brassica rapa. In this study, 14 NRT2s were identified in the B. rapa genome. The BrNRT2 family members contain the PLN00028 and MATE_like superfamily domains. Cis-element analysis indicated that regulatory elements related to stress responses are abundant in the promoter sequences of BrNRT2 genes. BrNRT2.3 expression was increased after drought stress, and BrNRT2.1 and BrNRT2.8 expression were significantly upregulated after salt stress. Furthermore, protein interaction predictions suggested that homologs of BrNRT2.3, BrNRT2.1, and BrNRT2.8 in Arabidopsis thaliana may interact with the known stress-regulating proteins AtNRT1.1, AtNRT1.5, and AtNRT1.8. In conclusion, we suggest that BrNRT2.1, BrNRT2.3, and BrNRT2.8 have the greatest potential for inducing abiotic stress tolerance. Our findings will aid future studies of the biological functions of BrNRT2 family genes.


Asunto(s)
Arabidopsis , Brassica rapa , Brassica rapa/genética , Transportadores de Nitrato , Estrés Salino , Arabidopsis/genética , Transporte Biológico
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569822

RESUMEN

The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factor critical for the growth, development, and stress tolerance of plants. However, the function of the AHL gene family in Brassica rapa (B. rapa) remains unclear. In this study, 42 AHL family members were identified from the B. rapa genome and mapped to nine B. rapa chromosomes. Two clades have formed in the evolution of the AHL gene family. The results showed that most products encoded by AHL family genes are located in the nucleus. Gene duplication was common and expanded the BrAHL gene family. According to the analysis of cis-regulatory elements, the genes interact with stress responses (osmotic, cold, and heavy metal stress), major hormones (abscisic acid), and light responses. In addition, the expression profiles revealed that BrAHL genes are widely expressed in different tissues. BrAHL16 was upregulated at 4 h under drought stress, highly expressed under cadmium conditions, and downregulated in response to cold conditions. BrAHL02 and BrAHL24 were upregulated at the initial time point and peaked at 12 h under cold and cadmium stress, respectively. Notably, the interactions between AHL genes and proteins under drought, cold, and heavy metal stresses were observed when predicting the protein-protein interaction network.


Asunto(s)
Brassica rapa , Brassica rapa/metabolismo , Genes de Plantas , Perfilación de la Expresión Génica , Cadmio/metabolismo , Genoma de Planta , Estrés Fisiológico/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445710

RESUMEN

The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.


Asunto(s)
Arabidopsis , Brassica rapa , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Perfilación de la Expresión Génica , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia
8.
Molecules ; 28(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298893

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by severe joint damage and disability. However, the specific mechanism of RA has not been thoroughly clarified over the past decade. Nitric oxide (NO), a kind of gas messenger molecule with many molecular targets, is demonstrated to have significant roles in histopathology and homeostasis. Three nitric oxide synthases (NOS) are related to producing NO and regulating the generation of NO. Based on the latest studies, NOS/NO signaling pathways play a key role in the pathogenesis of RA. Overproduction of NO can induce the generation and release of inflammatory cytokines and act as free radical gas to accumulate and trigger oxidative stress, which can involve in the pathogenesis of RA. Therefore, targeting NOS and its upstream and downstream signaling pathways may be an effective approach to managing RA. This review clearly summarizes the NOS/NO signaling pathway, the pathological changes of RA, the involvement of NOS/NO in RA pathogenesis and the conventional and novel drugs based on NOS/NO signaling pathways that are still in clinical trials and have good therapeutic potential in recent years, with an aim to provide a theoretical basis for further exploration of the role of NOS/NO in the pathogenesis, prevention and treatment of RA.


Asunto(s)
Artritis Reumatoide , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Óxido Nítrico Sintasa/metabolismo , Radicales Libres , Estrés Oxidativo
9.
J Control Release ; 358: 319-332, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149150

RESUMEN

Hepatic fibrosis is the common pathway for most chronic liver diseases, characterized by excessive accumulation of extracellular matrix (ECM) proteins. It has been shown that fibrotic ECM significantly hindered passage of nanoparticles. Efforts have been made by decorating degrading enzymes on surfaces of nanosized delivery vehicles to improve drug delivery. However, these strategies are restricted by limiting shelf-life. Inspired by the application of sonoporation in assisting drug delivery through blood-brain barrier and tumor tissues, we investigated whether sonoporation can be an alternative strategy in improving drug delivery for fibrotic diseases. Hydroxycamptothecin (HCPT), a potential drug in treating liver fibrosis, was selected as a model drug to evaluate the drug delivery efficiency and therapeutic effect among three delivery strategies, i.e., (1) injection solution, (2) delivery through liposomes, and (3) delivery via sonoporation. Our study showed that in addition to the improved drug delivery efficiency, the combination of HCPT and sonoporation led to synergistic effect and the mechanisms were investigated. The treatment group of HCPT delivered with sonoporation achieved the most significant attenuation in liver fibrosis among the three delivery strategies.


Asunto(s)
Camptotecina , Sistemas de Liberación de Medicamentos , Humanos , Liposomas , Cirrosis Hepática , Microburbujas
11.
Carbohydr Polym ; 305: 120550, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737199

RESUMEN

Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.


Asunto(s)
Productos Pesqueros , Inulina , Peso Molecular , Productos Pesqueros/análisis , Geles/química , Manipulación de Alimentos , Miosinas , Agua
12.
Nature ; 614(7947): 303-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697825

RESUMEN

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Asunto(s)
Brassicaceae , Flores , Hibridación Genética , Proteínas de Plantas , Polinización , Brassicaceae/genética , Brassicaceae/metabolismo , Depresión Endogámica , Óxido Nítrico/metabolismo , Fosfotransferasas/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Flores/metabolismo , Autofecundación
13.
Int Immunopharmacol ; 114: 109506, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442284

RESUMEN

Neuropathic pain is a growing concern in the medical community, and studies on new analgesic targets for neuropathic pain have become a new hot spot. Whether Connexin43 (Cx43) has a key role in neuropathic pain mediated by the purinergic 2X4 (P2X4) receptor in rats with chronic constriction injury (CCI) was explored in this study. Our experimental results show that blockade of Cx43 could attenuate neuropathic pain in rats suffering from CCI via the P2X4, p38, ERK, and NF-kB signalling pathways. These results suggest that Cx43 may be a promising therapeutic target for the development of novel pharmacological agents in the management of neuropathic pain.


Asunto(s)
Conexina 43 , Neuralgia , Ratas , Animales , Ratas Sprague-Dawley , Conexina 43/metabolismo , Constricción , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Sistema de Señalización de MAP Quinasas
14.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496989

RESUMEN

Glutamate receptors (GLRs) are involved in multiple functions during the plant life cycle through affecting the Ca2+ concentration. However, GLRs in Brassica species have not yet been reported. In this study, 16 glutamate receptor-like channels (GLR) belonged to two groups were identified in the Brassica rapa (B. rapa) genome by bioinformatic analysis. Most members contain domains of ANF_receptor, Peripla_BP_6, Lig_chan, SBP_bac_3, and Lig_chan_Glu_bd that are closely related to glutamate receptor channels. This gene family contains many elements associated with drought stress, low temperature stress, methyl jasmonate (MeJA), salicylic acid (SA), and other stress resistance. Gene expression profiles showed that BraGLR genes were expressed in roots, stems, leaves, flowers, and siliques. BraGLR5 expression was elevated after drought stress in drought-sensitive plants. BraGLR1, BraGLR8, and BraGLR11 expression were significantly upregulated after salt stress. BraGLR3 expression is higher in the female sterile-line mutants than in the wild type. The expression levels of BraGLR6, BraGLR9, BraGLR12, and BraGLR13 were significantly higher in the male sterile-line mutants than in the wild type. The expression of most BraGLRs increased after self-pollination, with BraGLR9 exhibiting the greatest increase. These results suggest that BraGLRs play an important role in abiotic stress tolerance and sexual reproduction.


Asunto(s)
Brassica rapa , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Brassica rapa/metabolismo
15.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36430617

RESUMEN

Transient receptor potential vanillic acid 1 (TRPV1) is an ion channel activated by heat and inflammatory factors involved in the development of various types of pain. The P2X7 receptor is in the P2X family and is associated with pain mediated by satellite glial cells. There might be some connection between the P2X7 receptor and TRPV1 in neuropathic pain in diabetic rats. A type 2 diabetic neuropathic pain rat model was induced using high glucose and high-fat diet for 4 weeks and low-dose streptozocin (35 mg/kg) intraperitoneal injection to destroy islet B cells. Male Sprague Dawley rats were administrated by intrathecal injection of P2X7 shRNA and p38 inhibitor, and we recorded abnormal mechanical and thermal pain and nociceptive hyperalgesia. One week later, the dorsal root ganglia from the L4-L6 segment of the spinal cord were harvested for subsequent experiments. We measured pro-inflammatory cytokines, examined the relationship between TRPV1 on neurons and P2X7 receptor on satellite glial cells by measuring protein and transcription levels of P2X7 receptor and TRPV1, and measured protein expression in the PKCε/P38 MAPK/NF-κB signaling pathway after intrathecal injection. P2X7 shRNA and p38 inhibitor relieved hyperalgesia in diabetic neuropathic pain rats and modulated inflammatory factors in vivo. P2X7 shRNA and P38 inhibitors significantly reduced TRPV1 expression by downregulating the PKCε/P38 MAPK/NF-κB signaling pathway and inflammatory factors in dorsal root ganglia. Intrathecal injection of P2X7 shRNA alleviates nociceptive reactions in rats with diabetic neuropathic pain involving TRPV1 via PKCε/P38 MAPK/NF-κB signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Neuralgia , Receptores Purinérgicos P2X7 , Animales , Masculino , Ratas , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/genética , Hiperalgesia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
16.
Front Genet ; 13: 1044853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386810

RESUMEN

AGC protein kinases play important roles in regulating plant growth, immunity, and cell death. However, the function of AGC in Brassica rapa has not yet been clarified. In this study, 62 BrAGC genes were identified, and these genes were distributed on 10 chromosomes and divided into six subfamilies. Analysis of gene structure and conserved motifs showed that the activation segment of BrAGC genes was highly conserved, and genes of the same subfamily showed higher sequence and structural similarity. Collinearity analysis revealed that BrAGCs were more closely related to AtAGCs than to OsAGCs. Expression profile analysis revealed that BrAGCs were preferentially expressed in flowers and BrAGC26, BrAGC33, and BrAGC04 were preferentially expressed in the stigma; the expression of these genes was significantly upregulated after self-incompatibility pollination, and the expression of BrAGC13 and BrAGC32 was significantly upregulated after cross-pollination. In addition, several typical cis-elements involved in the stress response were identified in BrAGC promoters. The expression levels of BrAGC37 and BrAGC44 significantly varied under different types of abiotic stress. Collectively, we identified that BrAGC26, BrAGC33, and BrAGC44 have the greatest potential in regulating pollen-pistil interaction and abiotic stress tolerance, respectively. Our findings will aid future functional investigations of BrAGCs in B. rapa.

17.
Front Microbiol ; 13: 1002460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246283

RESUMEN

Pythium insidiosum is a rare fungus-like pathogen that is known to cause pythiosis in mammals with high morbidity and mortality. Identification of the pathogen is essential for timely treatment and rational use of antibiotics. However, Pythium insidiosum is difficult to detect via conventional microbiological tests. The current gold standard is polymerase chain reaction, which is lacking in most hospitals since human pythiosis is rare in China. In this study, we used metagenomic Next-Generation Sequencing and identified Pythium insidiosum in a 56-year-old Chinese male who was hospitalized due to severe edema in the right lower limb with scattered darkening indurations. The patient had a history of cirrhosis and occupational exposure to swamp water. Serological level of immune biomarkers indicated immunodeficiency, and Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody was positive. Surgical incision of the lesions revealed radiating and reticular cutaneous ulcers. Microbial infections were suspected but conventional tests failed to discover the etiology. Empirical use of penicillin, vancomycin, and ceftriaxone had no effect. As a result, the peripheral blood and tissue biopsies were sent for metagenomic Next-Generation Sequencing, which reported Pythium insidiosum. This finding was corroborated by pathological staining, whole-genome sequencing, and internal transcribed spacer sequencing. Notably, antifungal treatment was ineffective, but the patient responded well to oral trimethoprim-sulfamethoxazole, which may be due to the folp gene found in Pythium insidiosum genome. Our study prompts future studies to determine the optimal treatment of skin pythiosis.

18.
Front Plant Sci ; 13: 977881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092397

RESUMEN

High temperature negatively affects reproductive process significantly, leading to tremendous losses in crop quality and yield. Zhinengcong (ZNC), a crude extract from the endophytic fungus Paecilomyces variotii, has been shown to improve plant growth and resistance to biotic and abiotic stresses. We show here that ZNC can also alleviate heat stress-induced reproductive defects in Solanum lycopersicum, such as short-term heat-induced inhibition on pollen viability, germination and tube growth, and long-term heat stress-induced pollen developmental defects. We further demonstrated that ZNC alleviates heat stress by downregulating the expressions of ROS production-related genes, RBOHs, and upregulating antioxidant related genes and the activities of the corresponding enzymes, thus preventing the over accumulation of heat-induced reactive oxygen species (ROS) in anther, pollen grain and pollen tube. Furthermore, spraying application of ZNC onto tomato plants under long-term heat stress promotes fruit and seed bearing in the field. In summary, plant endophytic fungus extract ZNC promotes the reproductive process and yield of tomato plants under heat stress and presents excellent potential in agricultural applications.

19.
Biochem Biophys Res Commun ; 604: 179-184, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35316693

RESUMEN

Nanomaterials are widely used in biomedical applications such as drug delivery, bioimaging, and photothermal therapy. For example, graphene oxide (GO) nanomaterials are among the most popular drug delivery vehicles in treating liver diseases due to their tunable chemical/physical properties, and biocompatibility. However, it has been reported that nanomaterials tend to accumulate in livers. The biophysical impact of the accumulation in liver cells remains unclear, and it may cause the liver fibrosis in the long run. The activation of hepatic stellate cells (HSCs) is one of the key initial steps of liver fibrosis. In this paper, we explored the geometric effect (nanosheets vs. quantum dots) of GO nanomaterials on human HSCs, in terms of cell viability, fibrotic degree, mobility and regulation pathways. Our study showed that GO nanosheets could significantly reduce HSCs cell viability and mobility. The protein expression levels of TGFßRⅡ/Smad2/Smad3 decreased, corresponding to a trend of attenuating fibrotic degree. However, the expression level of α-SMA, a maker protein of fibrosis, increased and contradicted with the projection. Further investigation on mitochondria showed that GO nanosheets disrupted mitochondria membrane and membrane potentials. We found that while modulating fibrotic effect through the TGF-ß pathway, GO nanosheets induced oxidative stress and activated HSCs through reactive oxygen species(ROS)pathway. This was confirmed by the decreased expression level of α-SMA after co-incubation of GO nanosheets and n-acetyl cysteine (NAC) with HSCs. GO quantum dots decreased α-SMA expression level at 100 mg/l, along with decrease in GAPDH expression level and constant expression level of ß-actin. The correlation between GAPDH and α-SMA remains to be explored. Our study suggested that the biophysical impacts of GO nanomaterials on HSCs are geometry-dependent. Both GO nanosheets and quantum dots can be adapted for attenuating liver fibrosis with further investigation on mechanisms.


Asunto(s)
Grafito , Nanoestructuras , Fibrosis , Grafito/farmacología , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
20.
Molecules ; 27(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335180

RESUMEN

Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer's disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Acetilcolina/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Colinérgicos/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA