Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(22): 14377-14387, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38781118

RESUMEN

Liquid crystal wet-spun carbon nanotube fibers (CNTFs) offer notable advantages, such as precise alignment and scalability. However, these CNTFs usually suffer premature failure through intertube slippage due to the weak interfacial interactions between adjacent shells and bundles. Herein, we present a microwave (MW) welding strategy to enhance intertube interactions by partially carbonizing interstitial heterocyclic aramid polymers. The resulting CNTFs exhibit ultrahigh static tensile strength (6.74 ± 0.34 GPa) and dynamic tensile strength (9.52 ± 1.31 GPa), outperforming other traditional high-performance fibers. This work provides a straightforward yet effective approach to strengthening CNTFs for advanced engineering applications.

2.
Materials (Basel) ; 17(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255453

RESUMEN

A large alpine meadow in a seasonal permafrost zone exists in the west of Sichuan, which belongs to a part of the Qinghai-Tibet Plateau, China. Due to the extreme climates and repeated freeze-thaw cycling, resulting in a diminishment in soil shear strength, disasters occur frequently. Plant roots increase the complexity of the soil freeze-thaw strength problem. This study applied the freeze-thaw cycle and direct shear tests to investigate the change in the shear strength of root-soil composite under freeze-thaw cycles. This study examined how freeze-thaw cycles and initial moisture content affect the shear strength of two sorts of soil: uncovered soil and root-soil composite. By analyzing the test information, the analysts created numerical conditions to foresee the shear quality of both sorts of soil under shifting freeze-thaw times and starting moisture levels. The results showed that: (1) Compared to the bare soil, the root-soil composite was less affected by freeze-thaw cycles in the early stage, and the shear strength of both sorts of soil was stabilized after 3-5 freeze-thaw cycles. (2) The cohesion of bare soil decreased more than that of root-soil composite with increasing moisture content. However, freeze-thaw cycles primarily influence soil cohesion more than the internal friction angle. The cohesion modification leads to changes in shear quality for both uncovered soil and root-soil composite. (3) The fitting equations obtained via experiments were used to simulate direct shear tests. The numerical results are compared with the experimental data. The difference in the soil cohesion and root-soil composite cohesion between the experiment data and the simulated result is 8.2% and 17.2%, respectively, which indicates the feasibility of the fitting equations applied to the numerical simulation of the soil and root-soil composite under the freeze-thaw process. The findings give potential applications on engineering and disaster prevention in alpine regions.

3.
Front Chem ; 11: 1260099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927565

RESUMEN

Carbon nanotubes (CNTs) had potential applications in energy conversion and storage devices, and it could be prepared by expanded graphite loaded with catalyst at high temperature, however, the mechanism of carbon nanotube growth in expanded graphite need further confirmation. In this work, carbon nanotubes' in situ growth in expanded graphite (EG) were prepared via catalytic pyrolysis reaction using carbores P as a carbon source and Co(NO3)3•6H2O as a catalyst. The results of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDS) indicated the carbon nanotubes could generate in, EG with the presence of carbores P as a carbon source and cobalt nitrate as a catalyst. More interestingly, the growth mechanism of carbon nanotubes could be concluded by the results of differential thermal analysis-thermogravimetry-mass spectrometry (DTA-TG-MS) and X-ray photoelectron spectroscopy (XPS) analysis. The pyrolysis products of carbores P were mainly hydrocarbon gas such as CH4 gas, which reacts with Co(NO3)3·6H2O catalyst to reduces CoOx to Co particles, then the carbon form pyrolysis was deposited the on the surface catalyst Co particles and, after continuous solid dissolution and precipitation, carbon nanotubes were at last generated in EG at last.

4.
Nano Lett ; 22(15): 6035-6047, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852935

RESUMEN

The development of human society has set unprecedented demands for advanced fiber materials, such as lightweight and high-performance fibers for reinforcement of composite materials in frontier fields and functional and intelligent fibers in wearable electronics. Carbonene materials composed of sp2-hybridized carbon atoms have been demonstrated to be ideal building blocks for advanced fiber materials, which are referred to as carbonene fibers. Carbonene fibers that generally include pristine carbonene fibers, composite carbonene fibers, and carbonene-modified fibers hold great promise in transferring the extraordinary properties of nanoscale carbonene materials to macroscopic applications. Herein, we give a comprehensive discussion on the conception, classification, and design strategies of carbonene fibers and then summarize recent progress regarding the preparations and applications of carbonene fibers. Finally, we provide insights into developing lightweight, high-performance, functional, and intelligent carbonene fibers for next-generation fiber materials in the near future.


Asunto(s)
Carbono , Electrónica , Humanos
5.
Environ Sci Technol ; 56(3): 1713-1723, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015525

RESUMEN

Current colorimetric probes for fluoride (F-) primarily rely on organic chromophores that often suffer from unsatisfactory selectivity, complex organic synthesis, and low aqueous compatibility. Herein, we proposed a highly specific colorimetric method for F- with 100% aqueous compatibility by triggering the intrinsic peroxidase-like activity of a AgPt-Fe3O4 nanozyme encapsulated in SiO2 shells. The excellent catalytic performance of the AgPt-Fe3O4 nanozyme serves as an ideal platform for sensitive colorimetric sensing. After being encapsulated in SiO2, the enzyme-like activity of AgPt-Fe3O4 is inhibited and only F- can exclusively etch the SiO2 shell to expose the active site of the nanozyme, thereby inducing color changes via oxidation of the chromogenic substrate. The limit of detection of the proposed method can reach as low as 13.73 µM in aqueous solution, which is lower than the maximum allowable concentration (79 µM) stipulated in the World Health Organization drinking water regulation. More importantly, this method is highly specific toward F- over other types of anions commonly found in environmental water, making it capable of analyzing sewage samples with very complex matrices. Finally, the nanoprobe is embedded into a test strip by electrostatic spinning to enable the rapid, visual, and on-site detection of F-.


Asunto(s)
Colorimetría , Dióxido de Silicio , Aniones , Catálisis , Colorimetría/métodos , Fluoruros , Dióxido de Silicio/química
6.
Small ; 18(1): e2104706, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34873837

RESUMEN

Achieving high sensitivity over a broad pressure range remains a great challenge in designing piezoresistive pressure sensors due to the irreconcilable requirements in structural deformability against extremely high pressures and piezoresistive sensitivity to very low pressures. This work proposes a hybrid aerogel/hydrogel sensor by integrating a nanotube structured polypyrrole aerogel with a polyacrylamide (PAAm) hydrogel. The aerogel is composed of durable twined polypyrrole nanotubes fabricated through a sacrificial templating approach. Its electromechanical performance can be regulated by controlling the thickness of the tube shell. A thicker shell enhances the charge mobility between tube walls and thus expedites current responses, making it highly sensitive in detecting low pressure. Moreover, a nucleotide-doped PAAm hydrogel with a reversible noncovalent interaction network is harnessed as the flexible substrate to assemble the aerogel/hydrogel hybrid sensor and overcome sensing saturation under extreme pressures. This highly stretchable and self-healable hybrid polymer sensor exhibits linear response with high sensitivity (Smin  > 1.1 kPa-1 ), ultrabroad sensing range (0.12-≈400 kPa), and stable sensing performance over 10 000 cycles at the pressure of 150 kPa, making it an ideal sensing device to monitor pressures from human physiological signals to significant stress exerted by vehicles.


Asunto(s)
Hidrogeles , Nanotubos de Carbono , Humanos , Monitoreo Fisiológico , Polímeros , Pirroles
7.
J Hazard Mater ; 423(Pt B): 127160, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34537639

RESUMEN

Ammonia has been used as an important marker to indicate the extent of food spoilage. However, current gas sensors for ammonia suffer from either insufficient sensitivity and selectivity or unsatisfactory levels of automation, impeding their practical application for on-site and real-time monitoring of food quality. To overcome these limitations, we propose here the design of a sensing material by in-situ growing (001)TiO2 onto a two-dimensional transition-metal carbide (Ti3C2Tx, MXene). In this design, TiO2 with a highly active (001) crystal plane provides efficient photogeneration under UV irradiation, while Ti3C2Tx can store holes through Schottky junction formed at the interface with TiO2, which greatly promotes the separation of electron-hole pairs, thereby enhancing ammonia sensing performance. By further introducing UV light for electron excitation, the (001)TiO2/Ti3C2Tx based sensor shows 34 times higher sensitivity for ammonia (30 ppm) than that of Ti3C2Tx. The density functional theory further revealed that the (001) plane of TiO2 and Ti3C2Tx composite configuration exhibited the highest adsorption affinity towards ammonia. Finally, an integrated circuit alarm system including near-field communication and a micro-controller system was designed to detect the decay process of fresh pork, fish, and shrimp. We believe such a sensing technology holds great promise in food quality monitoring.


Asunto(s)
Amoníaco , Rayos Ultravioleta , Animales , Iluminación , Titanio
8.
Biosens Bioelectron ; 196: 113724, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700262

RESUMEN

Although nanozyme-based colorimetric assays have been broadly used for biosensing, some limitations such as low catalytic activity of nanozyme, poor sensitivity to analytes and lack of understanding the structure-activity relationship remain unsolved. In this work, we developed an ultrasensitive colorimetric method for biothiols detection based on density functional theory-assisted design of janus Pd-Fe3O4 nanozyme. The Pd-Fe3O4 dumbbell-like nanoparticles (DBNPs) prepared by seed-mediated approach shows a uniform heterodimeric nanostructure. Ultrasensitive biothiols detection is achieved from two aspects. On one hand, due to the synergistic effect between Pd and Fe3O4 in the dumbbell structure, Pd-Fe3O4 DBNPs show enhanced peroxidase-mimic activity compared to the individual components. On the other hand, when the target biothiols molecule is present, its inhibition effect on the janus Pd-Fe3O4 nanozyme is also significantly enhanced. The above results are confirmed both in experiment and theoretical calculation. Based on the rational design, a simple, highly selective and urtrasensitive colorimetric and quantitative assay for biothiols is developed. The limit of detection (LOD) can reach as low as 3.1 nM in aqueous solution. This assay is also successfully applied to the detection of biothiols in real urine samples. Moreover, the Pd-Fe3O4 nanozyme is used to discriminate biothiols levels in normal and cancer cells with high sensitivity at the cell density of 15,000/mL, which demonstrates its great potential in biological and clinical analysis. This work not only shows the great promise of janus bimetallic nanozymes' excellent functionalities but also provides rational guidelines to design high-performance nanozymes for biosensing and biomedical applications.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Catálisis , Límite de Detección , Peroxidasa
9.
Arch Environ Contam Toxicol ; 81(1): 133-141, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34037834

RESUMEN

The chemical substances in urban rivers influence municipal water systems and reflect the recent use of these chemicals by humans or industries around the urban center. In this study, seven perfluoroalkyl substances (PFASs)-perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), 2-perfluorohexyl ethanol (6:2 FTOH), 2-perfluorooctyl ethanol (8:2 FTOH), and 6:2 chlorinated polyfluoroalkyl ether sulfonic acids (F-53B)-could be detected and quantified in river water and sediment samples collected from one tributary of the Liuxi River, which is part of Pearl River near Guangzhou in Guangdong province, South China. The fluxes of target PFASs into Liuxi River and their related ecological risks were further estimated. The total concentrations of PFASs (ΣPFASs) ranged from 506 to 3.16 × 103 ng/L in water samples and 9.13 to 850 ng/L in sediment samples. The two dominant PFAS compounds were 6:2 FTOH and PFHpA, which accounted for more than 90.0% of ΣPFASs in river water and sediment. Correlation analysis showed that there was significant positive correlation (p < 0.01) between two selected PFASs (e.g., between 6:2 FTOH and PFHpA). Correlation analysis of PFASs in river water and sediment indicated most PFASs in sediment were partitioned from river water. The ecological risk assessment indicated that the detected PFASs have a low risk (HQ < 0.1) in river water and sediment to Daphnia magna in the Liuxi River.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , China , Monitoreo del Ambiente , Fluorocarburos/análisis , Humanos , Medición de Riesgo , Ríos , Agua , Contaminantes Químicos del Agua/análisis
10.
J Chromatogr A ; 1639: 461928, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33524934

RESUMEN

A temperature-responsive solid-phase microextraction (SPME) coating was prepared via in-situ atom transfer radical polymerization (ATRP) method. By controlling the temperature of solution below and above the lower critical solution temperature (LCST) of the coating, it can switch between hydrophilic and hydrophobic, thus providing a convenient approach for the selective extraction of analytes with different polarities. The average extraction amount of temperature-responsive coating for polar analytes is about 1.5-fold to that of non-polar ones below LCST, and vice versa. Effective extraction of three biomacromolecules was also obtained by controlling the temperature below or above LCST. The adsorption capacity of the coating for the hydrophilic biomacromolecules at 15 °C is 1.5-2 folds that of 50 °C, whereas the adsorption capacity of the coating to BSA at 50 °C is about 3 folds that of 15 °C. This approach holds great promise for SPME because it provides a simple strategy to prepare bifunctional coatings for various applications.


Asunto(s)
Hidrogeles/química , Microextracción en Fase Sólida/métodos , Temperatura , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
11.
Anal Chem ; 92(14): 9989-9996, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32551556

RESUMEN

In situ monitoring of products generated by important heterogeneous catalytic reactions is of great significance for chemical industry, particularly when the products or intermediates are not sufficiently stable or occur at trace-level concentrations. It is therefore highly desirable to develop an integrated in situ catalysis and extraction method, which can simultaneously catalyze the reaction and enrich products while maintaining compatibility with analytical instrumentation. Herein, we propose an approach by depositing different types of metal nanocrystals, including gold, platinum, and palladium nanoparticles, onto fibrous silica microspheres coated fibers for integrated in situ catalysis and extraction. As a proof-of-concept, several typical chemical reactions, including the reduction of p-nitrophenol, epoxidation of styrene, oxidation of benzyl alcohol, and dechlorination of p-chlorophenol, were investigated to validate the feasibility of this method. Our results show that these coatings not only function as catalysts to accelerate the selected reactions but also serve as adsorbents to extract the reactants, intermediates, and products for direct gas chromatographic analysis, suggesting the viability of this approach for the in situ evaluation of catalytic processes. By this approach, the yield, selectivity, and kinetics of a reaction can be readily assessed. This approach can also be extended to investigate the catalytic performance of the same metal nanocrystals with different morphology, surface facet, structure, or surface functionalization. This approach will find broad generality for assessing the catalytic efficiency and selectivity of new catalysts or new chemical reactions and dynamic processes in these reactions.

12.
Nanoscale ; 12(16): 8982-8990, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32270797

RESUMEN

Light-weight metallic aero-sponges are highly desirable for electronics, energy storage, catalysis and environmental remediation. Although several fabrication methods have been developed, the mechanical strength and the structural fatigue resistance of the metallic aero-sponges remain unsatisfactory. Loofah sponge is known for its mechanical strength and grease absorption due to its highly ordered hierarchical laminae-trestle-laminae (L-T-L) microstructure. Inspired by this structure-function relationship, we engineered a highly ordered L-T-L structured copper aero-sponge by unidirectional freeze-casting of copper nanowires (CuNWs) and polyvinyl alcohols (PVA). By this approach, water-to-ice crystallization shaped the building blocks into vertically distributed microchannels and horizontally arranged hollow pores. The copper aero-sponge exhibits anisotropic mechanical elasticity with a maximum tolerable compressive stress of 57 kPa, sustainable resilience at a strain of 75% and structure-induced hydrophobicity with a water contact angle more than 130°. The elasticity and hydrophobicity of the copper aero-sponge are also superior to those of the mimicked loofah sponge and copper aero-sponge with disordered pore structure made by the conventional freeze-casting. This work can be extended to manufacture novel bioinspired aero-sponges/aero-gels with hierarchical ordered microstructures.

13.
ACS Appl Mater Interfaces ; 12(14): 16822-16830, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186851

RESUMEN

Compressible and ultralight all-carbon materials are promising candidates for piezoresistive pressure sensors. Although several fabrication methods have been developed, the required elasticity and fatigue resistance of all-carbon materials are yet to be satisfied as a result of energy loss and structure-derived fatigue failure. Herein, we present a two-stage solvothermal freeze-casting approach to fabricate all-carbon aerogel [modified graphene aerogel (MGA)] with a multi-arched structure, which is enabled by the in-depth solvothermal reduction of graphene oxide and unidirectional ice-crystal growth. MGA exhibits supercompressibility and superelasticity, which can resist an extreme compressive strain of 99% and maintain 93.4% height retention after 100 000 cycles at the strain of 80%. Rebound experiments reveal that MGA can rebound the ball (367 times heavier than the aerogel) in 0.02 s with a very fast recovery speed (∼615 mm s-1). Even if the mass ratio between the ball and aerogel is increased to 1306, the ball can be rebound in a relatively short time (0.04 s) with a fast recovery speed (∼535 mm s-1). As a result of its excellent mechanical robustness and electrical conductivity, MGA presents a stable stress-current response (10 000 cycles), tunable linear sensitivity (9.13-7.29 kPa-1), and low power consumption (4 mW). The MGA-based wearable pressure sensor can monitor human physiological signals, such as pulses, sound vibrations, and muscular movements, demonstrating its potential practicability as a wearable device.

14.
BMC Syst Biol ; 12(Suppl 7): 119, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547775

RESUMEN

BACKGROUND: Accumulation of amyloid ß-peptide (Aß) is implicated in the pathogenesis and development of Alzheimer's disease (AD). Neuron-enriched miRNA was aberrantly regulated and may be associated with the pathogenesis of AD. However, regarding whether miRNA is involved in the accumulation of Aß in AD, the underlying molecule mechanism remains unclear. Therefore, we conduct a systematic identification of the promising role of miRNAs in Aß deposition, and shed light on the molecular mechanism of target miRNAs underlying SH-SY5Y cells treated with Aß-induced cytotoxicity. RESULTS: Statistical analyses of microarray data revealed that 155 significantly upregulated and 50 significantly downregulated miRNAs were found on the basis of log2 | Fold Change | ≥ 0.585 and P < 0.05 filter condition through 2588 kinds of mature miRNA probe examined. PCR results show that the expression change trend of the selected six miRNAs (miR-6845-3p, miR-4487, miR-4534, miR-3622-3p, miR-1233-3p, miR-6760-5p) was consistent with the results of the gene chip. Notably, Aß25-35 downregulated hsa-miR-4487 and upregulated hsa-miR-6845-3p in SH-SY5Y cell lines associated with Aß-mediated pathophysiology. Increase of hsa-miR-4487 could inhibit cells apoptosis, and diminution of hsa-miR-6845-3p could attenuate axon damage mediated by Aß25-35 in SH-SY5Y. CONCLUSIONS: Together, these findings suggest that dysregulation of hsa-miR-4487 and hsa-miR-6845-3p contributed to the pathogenesis of AD associated with Aß25-35 mediated by triggering cell apoptosis and synaptic dysfunction. It might be beneficial to understand the pathogenesis and development of clinical diagnosis and treatment of AD. Further, our well-designed validation studies will test the miRNAs signature as a prognostication tool associated with clinical outcomes in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , MicroARNs/genética , Fragmentos de Péptidos/toxicidad , Apoptosis/efectos de los fármacos , Apoptosis/genética , Axones/efectos de los fármacos , Axones/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Humanos , Transcriptoma/efectos de los fármacos
15.
BMC Genomics ; 19(1): 538, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012096

RESUMEN

BACKGROUND: Esophageal squamous cell carcinomas (ESCC) is the fourth most lethal cancer in China. Previous studies reveal several highly conserved mutational processes in ESCC. However, it remains unclear what are the true regulators of the mutational processes. RESULTS: We analyzed the somatic mutational signatures in 302 paired whole-exome sequencing data of ESCC in a Chinese population for potential regulators of the mutational processes. We identified three conserved subtypes based on the mutational signatures with significantly different clinical outcomes. Our results show that patients of different subpopulations of Chinese differ significantly in the activity of the "NpCpG" signature (FDR = 0.00188). In addition, we report ZNF750 and CDC27, of which the somatic statuses and the genetic burdens consistently influence the activities of specific mutational signatures in ESCC: the somatic ZNF750 status is associated with the AID/APOBEC-related mutational process (FDR = 0.0637); the somatic CDC27 copy-number is associated with the "NpCpG" (FDR = 0.00615) and the AID/APOBEC-related mutational processes (FDR = 8.69 × 10- 4). The burdens of germline variants in the two genes also significantly influence the activities of the same somatic mutational signatures (FDR < 0.1). CONCLUSIONS: We report multiple factors that influence the mutational processes in ESCC including: the subpopulations of Chinese; the germline and somatic statuses of ZNF750 and CDC27 and exposure to alcohol and tobacco. Our findings based on the evidences from both germline and somatic levels reveal potential genetic regulators of the somatic mutational processes and provide insights into the biology of esophageal carcinogenesis.


Asunto(s)
Pueblo Asiatico/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/genética , Carcinoma de Células Escamosas/patología , China , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Neoplasias Esofágicas/patología , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genoma Humano , Genotipo , Células Germinativas/metabolismo , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor
16.
Langmuir ; 34(5): 1890-1898, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29307185

RESUMEN

A facile synthesis strategy was adopted to prepare resilient graphene aerogel (GA) with properties of high emulsified oil adsorption capacities, excellent rebounding performance, oil-water selectivity, and recycling abilities. The maximum adsorption capacity of GA for emulsified diesel oil was 2.5 × 104 mg g-1. The microscopic kinetic and thermodynamic mutual reaction models of diesel oil emulsion adsorption onto GA were investigated to describe the adsorption mechanism. The emulsified diesel oil was able to be separated efficiently from the oil-water emulsion by GA because of their high oil selectivity. Interestingly, both kinetics and thermodynamic experiments show that emulsified oil adsorption on GA is a physical adsorption and spontaneous process. Besides, GA can be reused with prominent repeatability for at least 10 cycles, demonstrating feasibility in practical applications of GA-based oily water treatment.

17.
Exp Ther Med ; 14(5): 3979-3984, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29067094

RESUMEN

The present study aimed to evaluate the therapeutic efficacy of dasatinib in a patient with nucleoporin 214-tyrosine protein kinase ABL1 proto-oncogene 1 (NUP214-ABL1)-positive early T-cell precursor-acute lymphoblastic leukemia (ETP-ALL), as well as that of selinexor and dasatinib for NUP214-ABL1-positive ETP-ALL in vitro. ETP leukemia is a form of T-cell ALL (T-ALL) with poor prognosis. The NUP214-ABL1 gene is present in ~6% of T-ALL cases, however the prevalence of NUP214-ABL1 gene expression in ETP-ALL in particular has not yet been verified. The current study reports the rare case of a 29-year-old man with ETP-ALL harboring the NUP214-ABL1 fusion gene, presenting with low-grade fever, stomachache and splenomegaly. The patient was successfully treated with dasatinib and vincristine, idarubicin, cyclophosphamide and prednisone (VICP) chemotherapy. The therapeutic efficacy of selinexor and dasatinib was also evaluated in vitro. Apoptosis was analyzed using Annexin V/propidium iodide staining and flow cytometry, and poly ADP-ribose polymerase (PARP) cleavage was detected using western blot analysis. The results demonstrated that the apoptotic cell population significantly increased following selinexor or dasatinib treatment compared with the control (P<0.05). Furthermore, combined selinexor and dasatinib treatment led to a significant increase in cell apoptosis compared with either treatment alone (P<0.05). The apoptosis results were confirmed by PARP cleavage. Thus, NUP214-ABL1 fusion gene expression should be tested in T-ALL, including ETP-ALL. Dasatinib used in combination with traditional induction chemotherapy may reverse the high induction failure of ETP-ALL with NUP214-ABL1 fusion gene; however, further prospective studies are required to confirm this. Therefore, selinexor with or without dasatinib may serve as a potential salvage therapy in the case of relapse and may be developed as a novel treatment for ETP-ALL with the NUP214-ABL1 fusion gene.

18.
Dig Dis Sci ; 59(7): 1428-35, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798994

RESUMEN

BACKGROUND: Trefoil factor family 1 (TFF1) is a member of the TFF-domain peptide family involved in epithelial restitution and cell motility. Recently, we screened Piezo1 as a candidate TFF1-binding protein. AIM: We aimed to confirm Piezo1 as a novel TFF1 binding protein and to assess the role of this interaction in mediating gastric cancer cell mobility. METHODS: This interaction was confirmed by co-immunoprecipitation and co-localisation of TFF1 and Piezo1 in GES-1 cells. We used stable RNA interference to knockdown Piezo1 protein expression and restored the expression of TFF1 in the gastric cancer cell lines SGC-7901 and BGC-823. Cell motility was evaluated using invasion assay and migration assay in vitro. The expression levels of the integrin subunits ß1, ß5, α1 as well as the expression of ß-catenin and E-cadherin were detected by Western blot. RESULTS: We demonstrate that TFF1, but not TFF2 or TFF3, bind to and co-localize with Piezo1 in the cytoplasm in vitro. TFF1 interacts with the C-terminal portion of the Piezo1 protein. Wound healing and trans-well assays demonstrated that the restored expression of TFF1 promoted cell mobility in gastric cancer cells, and this effect was attenuated by the knockdown of Piezo1. Western blots demonstrated the decreased expression of integrin ß1 in Piezo1-knockdown cells. CONCLUSIONS: Our data demonstrate that Piezo1 is a novel TFF1 binding protein that is important for TFF1-mediated cell migration and suggest that this interaction may be a therapeutic target in the invasion and metastasis of gastric cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Canales Iónicos/metabolismo , Neoplasias Gástricas/fisiopatología , Proteínas Supresoras de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Neoplasias Gástricas/metabolismo , Factor Trefoil-1 , Factor Trefoil-2
19.
Mol Biol Rep ; 39(4): 4127-34, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21769478

RESUMEN

Increasing evidence indicates that in gastric epithelial cells, induction of TFF3 by hypoxia is mediated by HIF-1. Since VEGF is one of the most important angiogenic factors on cancer progression, we have started to investigate the possible link among HIF-1α, VEGF, and TFF3 in gastric cancer cells. We induced the hypoxic condition in SGC-7901cells using hypoxia-mimetic agent of CoCI2. SGC7901 cells were transfected with pcPUR + U6 plasmid carrying RNAi targeted to human TFF3 and selected puromycin-resistant pools to establish the stable knockdown of TFF3 cells. Our results showed the induction of HIF-1a via hypoxia and consequences of increased expressions of the TFF3 and VEGF in gastric cancer SGC-7901 cells. Overexpression of TFF3 upregulated the mRNA expressions of VEGF and HIF-1a induced by hypoxia, and stable knockdown of TFF3 impaired the mRNA upregulations of VEGF and HIF-1a induced by hypoxia. Furthermore, knockdown of TFF3 reduced the VEGF protein secretion: as VEGF secretion was increased time dependent manner in response to the hypoxia induction in TFF3-WT cells; however, VEGF production was significantly decreased in TFF3-KD cells (621 ± 89 vs. 264 ± 73 at 6 h and 969 ± 97 vs. 508 ± 69 at 12 h, P < 0.05). Our data demonstrated the TFF3 mediated regulation of VEGF expression induced by hypoxia, and implicated that TFF3 might be applied as a potential anti-angiogenic target for treatment of gastric cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Péptidos/metabolismo , Neoplasias Gástricas/genética , Factor A de Crecimiento Endotelial Vascular/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor Trefoil-3 , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Artículo en Chino | MEDLINE | ID: mdl-15065413

RESUMEN

OBJECTIVE: To summarize the latest developments in silk protein fiber as biomaterials and their applications in tissue engineering. METHODS: Recent original literature on silk protein fiber as biomaterials were reviewed, illustrating the properties of silk protein fiber biomaterials. RESULTS: The silk protein fiber has the same functions of supporting the cell adhesion, differentiation and growth as native collagen, and is renewed as novel biomaterials with good biocompatibility, unique mechanical properties and is degradable over a longer time. CONCLUSION: Silk protein fiber can be used as a suitable matrix for three dimensional cell culture in tissue engineering. It has a great potential applications in other fields.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Ingeniería de Tejidos , Animales , Bombyx , Adhesión Celular , División Celular , Colágeno/química , Matriz Extracelular/química , Fibroínas/química , Fibroínas/metabolismo , Proteínas de Insectos , Seda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...