RESUMEN
Three-dimensional (3D) bioprinting technology stands out as a promising tissue manufacturing process to control the geometry precisely with cell-loaded bioinks. However, the isotropic culture environment within the bioink and the lack of topographical cues impede the formation of oriented cardiac tissue. To overcome this limitation, we present a novel method named 3D nanofiber-assisted embedded bioprinting (3D-NFEP) to fabricate cardiac tissue with an oriented morphology. Aligned 3D nanofiber scaffolds were fabricated by divergence electrospinning, which provided structural support for printing of the low-viscosity bioink and structural induction to cardiomyocytes. Cells adhered to the aligned fibers after hydrogel degradation, and a high degree of cell alignment was observed. This technology was also demonstrated as a feasible solution for multilayer cell printing. Therefore, 3D-NFEP was demonstrated as a promising method for bioprinting oriented cardiac tissue with low-viscosity bioink and is expected to be applied for structured and cardiac tissue engineering.
RESUMEN
This study investigated the effects of preheat treatment (70-100⯰C) and syringic acid (SA) grafting on the antioxidant, antibacterial, and physicochemical properties of black soybean protein isolate (BSPI) before and after in vitro digestion. The results revealed that both preheat treatment and SA grafting increased the digestibility and the absolute zeta potential value of BSPI. However, as the preheating temperature increased, the antioxidant ability of BSPI decreased, which was improved by SA grafting. During in vitro digestion, the absolute zeta potential and antioxidant activities of preheated BSPI and preheated BSPI-SA complex followed the order: intestine > gastric > before digestion. Compared with before digestion, preheated BSPI with its SA complex after in vitro digestion exhibited excellent antibacterial activities. Importantly, the preheated BSPI-SA complex enhanced the SA recovery rate during digestion and SA stability, with the highest recovery rate observed for the SA-grafted BSPI with preheat treatment at 100°C (BSPI100-SA). The principal component analysis sufficiently distinguished preheated BSPI and preheated BSPI-SA complexes. There were partitions between BSPI and BSPI-SA treated at different preheating temperatures. This study contributes to expanding the potential applications of BSPI with its SA complex in food products and offers guidance for designing SA delivery systems. PRACTICAL APPLICATION: Preheated BSPI-SA complexes could serve as functional ingredients in food or health products. Besides, preheated BSPI has application potential as a carrier for SA delivery.
RESUMEN
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Asunto(s)
Hidrogeles , Estructuras Metalorgánicas , Pirenos , Troponina I , Pirenos/química , Estructuras Metalorgánicas/química , Troponina I/análisis , Troponina I/sangre , Concentración de Iones de Hidrógeno , Humanos , Hidrogeles/química , Inmunoensayo/métodos , Colorantes Fluorescentes/química , FluorescenciaRESUMEN
All-inorganic lead-free CsSnI3 has shown promising potential in optoelectronic applications, particularly in near-infrared perovskite light-emitting diodes (Pero-LEDs). However, non-radiative recombination induced by defects hinders the optoelectronic properties of CsSnI3-based Pero-LEDs, limiting their potential applications. Here, we uncovered that ß-CsSnI3 exhibits higher defect tolerance compared to orthorhombic γ-CsSnI3, offering a potential for enhancing the emission efficiency. We further reported on the deposition and stabilization of highly crystalline ß-CsSnI3 films with the assistance of cesium formate to suppress electron-phonon scattering and reduce nonradiative recombination. This leads to an enhanced photoluminescence quantum yield up to â¼10%. As a result, near-infrared LEDs based on ß-CsSnI3 emitters are achieved with a peak external quantum efficiency of 1.81% and excellent stability under a high current injection of 1.0 A cm-2.
RESUMEN
Chemotherapy, as a conventional strategy for tumor therapy, often leads to unsatisfied therapeutic effect due to the multi-drug resistance and the serious side effects. Herein, we genetically engineered a thermal-responsive murine Ferritin (mHFn) to specifically deliver mitoxantrone (MTO, a chemotherapeutic and photothermal agent) to tumor tissue for the chemotherapy and photothermal combined therapy of colorectal cancer, thanks to the high affinity of mHFn to transferrin receptor that highly expressed on tumor cells. The thermal-sensitive channels on mHFn allowed the effective encapsulation of MTO in vitro and the laser-controlled release of MTO in vivo. Upon irradiation with a 660 nm laser, the raised temperature triggered the opening of the thermal-sensitive channel in mHFn nanocage, resulting in the controlled and rapid release of MTO. Consequently, a significant amount of reactive oxygen species was generated, causing mitochondrial collapse and tumor cell death. The photothermal-sensitive controlled release, low systemic cytotoxicity, and excellent synergistic tumor eradication ability in vivo made mHFn@MTO a promising candidate for chemo-photothermal combination therapy against colorectal cancer.
Asunto(s)
Neoplasias Colorrectales , Ferritinas , Rayos Láser , Mitoxantrona , Terapia Fototérmica , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Ratones , Ferritinas/química , Ferritinas/metabolismo , Terapia Fototérmica/métodos , Humanos , Mitoxantrona/farmacología , Mitoxantrona/química , Mitoxantrona/uso terapéutico , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos , FemeninoRESUMEN
This study investigated preheated (25-100°C) black soybean protein isolate (BSPI) conjugated with syringic acid (SA) (25 and 50 µmol/g protein) under alkaline conditions, focusing on the structure, functional properties, and storage stability. The results revealed that the SA binding equivalent and binding rate on BSPI increased continuously as the preheat temperature increased. Additionally, preheating positively impacted the surface hydrophobicity (H0) of BSPI, with further enhancement observed upon SA binding. Preheating and SA binding altered the secondary and tertiary structure of BSPI, resulting in protein unfolding and increased molecular flexibility. The improvement in BSPI functional properties was closely associated with both preheating temperature and SA binding. Specifically, preheating decreased the solubility of BSPI but enhanced the emulsifying activity index (EAI) and foaming capacity (FC) of BSPI. Conversely, SA binding increased the solubility of BSPI with an accompanying increase in EAI, FC, foaming stability, and antioxidant activity. Notably, the BSPI100-SA50 exhibited the most significant improvement in functional properties, particularly in solubility, emulsifying, and foaming attributes. Moreover, the BSPI-SA conjugates demonstrated good stability of SA during storage, which positively correlated with the preheating temperature. This study proposes a novel BSPI-SA conjugate with enhanced essential functional properties, underscoring the potential of preheated BSPI-SA conjugates to improve SA storage stability. PRACTICAL APPLICATION: Preheated BSPI-SA conjugates can be used as functional ingredients in food or health products. In addition, preheated BSPI shows potential as a candidate for encapsulating and delivering hydrophobic bioactive compounds.
Asunto(s)
Ácido Gálico , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Proteínas de Soja , Proteínas de Soja/química , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Glycine max/química , Antioxidantes/química , Estabilidad ProteicaRESUMEN
Design of a ratiometric method is a promising pathway to improve the sensitivity and reliability of electrochemiluminescent (ECL) assay, for which the signals produced at two distinct potentials change reversely as it is applied to the target analyte. Herein, a biosensor for ECL assay of methicillin-resistant Staphylococcus aureus (MRSA) was constructed by immobilizing porcine IgG for capturing MRSA onto an electrode that was precoated with ß-cyclodextrin-conjugated luminol nanoparticles (ß-CD-Lu NPs) as an anodic luminophore. MOF PCN 224 loaded with an atomically distributed Zn element (PCN 224/Zn) was conjugated with phage recombinant cellular-binding domain (CBD) to act as a cathodic luminophore for tracing MRSA. After the formation of the sandwich complex of ß-CD-Lu NPs-porcine IgG/MRSA/PCN 224/Zn-CBD on the biosensor, two ECL reactions were triggered with cyclic voltammetry. The anodic process of the ß-CD-Lu NPs-H2O2 system and the cathodic process of the PCN 224/Zn-S2O82- system competed to react with reactive oxygen species (ROS) for producing ECL emission, which led to a reverse change of the two signals. Meanwhile, the overlap of the ß-CD-Lu NPs emission spectrum and PCN 224/Zn absorption spectrum effectively triggered ECL resonance energy transfer between the donor (ß-CD-Lu NPs) and the acceptor (PCN 224/Zn). Thus, a ratiometric ECL method was proposed for assaying MRSA with a dual-mechanism-driven mode. The detection limit for assaying MRSA is as low as 12 CFU/mL. The biosensor was applied to assay MRSA in various biological samples with recoveries ranging from 84.9 to 111.3%.
Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Animales , Porcinos , Mediciones Luminiscentes/métodos , Reproducibilidad de los Resultados , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Inmunoglobulina G , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/químicaRESUMEN
Recently various physical systems have been proposed for modeling Ising spin Hamiltonians appealing to solve combinatorial optimization problems with remarkable performance. However, how to implement arbitrary spin-spin interactions is a critical and challenging problem in unconventional Ising machines. Here, we propose a general gauge transformation scheme to enable arbitrary spin-spin interactions and external magnetic fields as well, by decomposing an Ising Hamiltonian into multiple Mattis-type interactions. With this scheme, a wavelength-division multiplexing spatial photonic Ising machine (SPIM) is developed to show the programmable capability of general spin coupling interactions. We exploit the wavelength-division multiplexing SPIM to simulate three spin systems: ±J models, Sherrington-Kirkpatrick models, and only locally connected J1-J2 models and observe the phase transitions. We also demonstrate the ground-state search for solving Max-Cut problem with the wavelength-division multiplexing SPIM. These results promise the realization of ultrafast-speed and high-power efficiency Boltzmann sampling to a generalized large-scale Ising model.
RESUMEN
Owing to the remarkable catalytic attributes, single-atom catalysts (SACs) have exhibited promising application prospects as the substitutes of natural enzymes. However, the low loading amount of atomic sites on typical SACs (no more than 5 wt %) significantly restricts their increased capability. Hereby, a layer growth inhibitor protocol was attempted to optimize anchoring isolated Co atoms efficiently on ultrathin monolayer layered double hydroxides (LDHs). Superior to the conventional multiple-layer LDHs, the synthesized monolayer LDHs (7.29 nm-thick) served as the emerging support for dispersing substantial active sites and featured a dramatic loading content of 32.5 wt %. Through X-ray absorption spectroscopy, the atomically dispersed active centers on Co SACs were verified as Co-N4 moieties. The results of radical scavenger experiments and electron paramagnetic resonance spectroscopy showed that Co SACs were favorable to the high yield of reactive oxygen species originating from the decomposition of H2O2. Therefore, Co SACs functioned as a sensitive enhancer to drastically boost the luminol-H2O2 chemiluminescence intensity by â¼4713-fold, which excelled drastically over these previously reported SACs. Furthermore, Co SACs were adopted as chemiluminescent probes for the quantitation of chlorothalonil, wherein a low detection limit of 49 pg mL-1 (3σ) was achieved. Additionally, the successful application in recovery trials demonstrated the favorable feasibility of Co SACs. The facile layer growth inhibitor protocol affords SACs with improved loading properties and even superior catalytic performances for sensitive luminescent bioassays.
RESUMEN
Vortices in fluids and gases have piqued the human interest for centuries. Development of classical-wave physics and quantum mechanics highlighted wave vortices characterized by phase singularities and topological charges. In particular, vortex beams have found numerous applications in modern optics and other areas. Recently, optical spatiotemporal vortex states exhibiting the phase singularity both in space and time have been described. Here, we report the topologically robust generation of acoustic spatiotemporal vortex pulses. We utilize an acoustic meta-grating with broken mirror symmetry which exhibits a topological phase transition with a pair of phase singularities with opposite topological charges emerging in the momentum-frequency domain. We show that these vortices are topologically robust against structural perturbations of the meta-grating and can be employed for the generation of spatiotemporal vortex pulses. Our work paves the way for studies and applications of spatiotemporal structured waves in acoustics and other wave systems.
RESUMEN
Respiratory rate and skin humidity are important physiological signals and have become an important basis for disease diagnosis, and they can be monitored by humidity sensors. However, it is difficult to employ high-quality humidity sensors on a broad scale due to their high cost and complex fabrication. Here, we propose a reliable, convenient, and efficient method to mass-produce humidity sensors. A capacitive humidity sensor is obtained by ablating a polyimide (PI) film with a picosecond laser to produce an interdigital electrode (IDE), followed by drop-casting graphene oxide (GO) as a moisture-sensitive material on the electrode. The sensor has long-time stability, a wide relative humidity (RH) detection range from 10% to 90%, and high sensitivity (3862 pF/%RH). In comparison to previous methods, the technology avoids the complex procedures and expensive costs of conventional interdigital electrode preparation. Furthermore, we discuss the effects of the electrode gap size and the amount of graphene oxide on humidity sensor performance, analyze the humidity sensing mechanism by impedance spectrum, and finally perform the monitoring of human respiratory rate and skin humidity change in a non-contact manner.
Asunto(s)
Grafito , Humanos , Humedad , Electrodos , Rayos Láser , Frecuencia RespiratoriaRESUMEN
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.
RESUMEN
Tin-lead perovskite-based photodetectors have a wide light-absorption wavelength range, which spans 1000 nm. However, the preparation of the mixed tin-lead perovskite films faces two great obstacles, namely easy oxidation of Sn2+to Sn4+and fast crystallization from tin-lead perovskite precursor solutions, thus further resulting in poor morphology and high density of defects in tin-lead perovskite films. In this study, we demonstrated a high-performance of near-infrared photodetectors prepared from a stable low-bandgap (MAPbI3)0.5(FASnI3)0.5film modified with 2-fluorophenethylammonium iodide (2-F-PEAI). The addition engineering can efficiently improve the crystallization of (MAPbI3)0.5(FASnI3)0.5films through the coordination binding between Pb2+and N atom in 2-F-PEAI, and resulting in a uniform and dense (MAPbI3)0.5(FASnI3)0.5film. Moreover, 2-F-PEAI suppressed Sn2+oxidation and effectively passivated defects in the (MAPbI3)0.5(FASnI3)0.5film, thereby significantly reducing the dark current in the PDs. Consequently, the near-infrared photodetectors showed a high responsivity with a specific detectivity of over 1012Jones at 800 to near-1000 nm. Additionally, the stability of PDs incorporated with 2-F-PEAI has been significantly improved under air conditions, and the device with the 2-F-PEAI ratio of 400:1 retained 80% of its initial efficiency after 450 h storage in air without encapsulation. Finally, 5 × 5 cm2photodetector arrays were fabricated to demonstrate the potential utility of the Sn-Pb perovskite photodetector in optical imaging and optoelectronic applications.
RESUMEN
Here, we prepared novel composite gels composed of citrus insoluble nanofiber and amylose, and examined their potential to be used as fat replacers and inhibit lipid digestion. We further evaluated the effect of different nanofiber/amylose ratios on the texture, thermal stability, water distribution, microstructure and lipid digestion of the composite gels. The addition of nanofiber improved the hardness, gumminess, viscoelasticity, thermal stability, and water-holding capacity of the composite gels, as well as strengthen their interpenetrating three-dimensional network. The gel prepared at a nanofiber/amylose ratio of 1:4 could provide an oral sensory perception similar to that of cream and therefore can be used as a potential fat replacer. Moreover, the emulsion stabilized by nanofiber/amylose could well inhibit lipid digestion, and the nanofiber/amylose ratio of 1:4 could achieve the minimum release amount of free fatty acids (55.81%). These findings provide a reference for the development of potential fat replacers.
Asunto(s)
Amilosa , Nanofibras , Geles/química , Agua , LípidosRESUMEN
Insoluble dietary fibre from citrus peels (CIDF) was found to have adsorption and inhibitory effect on the activity of pancreatic lipase (PL). CIDF-400 exhibited the greatest adsorption and activity inhibition effect on PL. The fluorescence quenching spectra indicated that CIDF could quench PL through a dynamic quenching process induced by the electrostatic interactions with only one binding site between them. The synchronous fluorescence and three-dimensional fluorescence spectra showed that CIDF might combine with PL to induce the increase in hydrophobicity and the reduction in polarity of tyrosine (Tyr) and tryptophan (Try) residues, which further led to the conformational alternations of PL. Moreover, circular dichroism (CD) showed that CIDF altered the secondary structure of PL, decreased α-helical structure content, and increased ß-sheet structure content, potentially resulting in PL structure opening and its active site exposure. This study provides new perspectives for the application of CIDFs produced from agricultural waste in regulating lipid metabolism.
Asunto(s)
Citrus , Lipasa , Adsorción , Dicroismo Circular , Citrus/química , Fibras de la Dieta , Lipasa/metabolismo , Páncreas/metabolismoRESUMEN
Black soybean (Glycine max (L.) Merr.) is rich in phenolic compounds, and processing technology has a significant effect on the content and activity of phenolic compounds. However, the mechanism of nine steaming and nine sun-drying processing technique is not fully understood. This paper presents the changes of phenolics content, phenolic acids composition and their influence on antioxidant activity before and after in vitro simulated gastrointestinal digestion of black soybeans (BS) under the process of nine steaming nine sun-drying. Results showed that the total phenolic content (TPC) and total flavonoids content (TFC) in BS were reduced by the heat treatment method, and exhibited a decreasing trend with more steaming and sun-drying cycle. During in vitro digestion, the contents and bioaccessibility of 12 phenolic acids (PA-12) in BS were highest in the stomach, followed by mouth and the intestine. The bioaccessibility of PA-12 in steamed and sun-dried BS was higher than that of raw black soybeans (S0D0) after digestion. It reached maximum after digestion at the third steaming and sun-drying cycle (i.e. S3D3), wherein the phenolic acids with the highest bioaccessibility were syringic acid, gallic acid, ferulic acid and chlorogenic acid. Syringic acid, in particular, increased significantly during digestion compared with that before digestion, which also increased during processing. The antioxidant activity of in vitro digested BS products with appropriate steaming and sun-drying degree increased compared with S0D0. Principal component analysis (PCA) showed that the in vitro digestion-induced properties of steamed and sun-dried BS could be well distinguished. The results confirm that the phenolic compounds and bioaccessibility of nine steamed nine sun-dried BS must be taken into account when assessing the improvement of human health.
Asunto(s)
Fabaceae , Glycine max , Humanos , Antioxidantes , Fenoles , Vapor , DigestiónRESUMEN
In view of the optimal catalytic efficiency (â¼100%), single-atom site catalysts are being widely exploited in a range of areas including organic synthesis, energy conversion, environmental remediation, biotherapy, etc. However, low loading ratio of the unitary active sites on single-atom site catalysts dramatically hinders the remarkable improvement of their catalytic activity. Hereby, a facile low-temperature reduction protocol was adopted for synthesizing CoN4-supported Co2N metal clusters on graphitic carbon nitride, which show the remarkably superior chemiluminescent (CL) catalytic capacity than some reported pure single-atom site catalysts. Nitrogen-encapsulated Co2N clusters coupled with isolated Co-N4 moieties (Co2N@Co-N4) endowed the synergetic catalysts with high Co content of 53.2 wt%. Through X-ray absorption spectroscopy, the synergetic active sites (Co2N@Co-N4) afforded the CoN4-supported Co2N clusters with the remarkable catalytic activity for accelerating the decomposition of H2O2 to produce extensive superoxide radical anion rather than singlet oxygen or hydroxyl radical. Therefore, the CoN4-supported Co2N clusters possessed the superb enhancement effect on luminol-H2O2 CL reaction by â¼22829 times. The CoN4-supported Co2N clusters were utilized as signal probes to establish a CL immunochromatographic assay (ICA) platform for quantitating mycotoxins. Herein, aflatoxin B1 was employed as a mode analyte and the limit of detection was as low as 0.33 pg mL-1 (3σ). As a proof-of-principle work, the developed ICA protocol was successfully employed on the detection of aflatoxin B1 spiked in Angelica dahurica and Ganoderma lucidum with acceptable recoveries of 84.0-107.0%. The ideal practicability of the work elucidates that CoN4-supported Co2N clusters showed a new perspective for developing the sensitive CL biosensing.
Asunto(s)
Radical Hidroxilo , Luminol , Luminol/química , Superóxidos , Oxígeno Singlete/química , Peróxido de Hidrógeno/química , Límite de Detección , Aflatoxina B1 , Metales , Nitrógeno , InmunoensayoRESUMEN
The constituents of germinated brown rice (GBR), brown rice (BRR), and white rice (WHR) and their impact on metabolism, inflammation, and gut microbiota in high fat (HF) diet-fed mice were examined. The contents of total fiber and γ-aminobutyric acid in BRR and GBR were higher than that in WHR (p < 0.05). Male C57 BL/6J mice received HF diet+26 g% of WHR, BRR, or GBR for 12 weeks. BRR and GBR comparably reduced HF diet-induced increases in fasting plasma glucose, lipids, insulin resistance, and inflammatory markers compared to WHR (p < 0.01). The abundance of fecal Bacteroidetes in mice fed HF+GBR or HF+BRR was higher than in HF+WHR-fed mice (p < 0.05). The abundance of fecal Lactobacillus gasseri in GBR-fed mice was greater than that in WHR- or BRR-fed mice (p < 0.05). The results indicated that GBR or BRR attenuated hyperglycemia, insulin resistance, and inflammation in mice. HF+GBR, but not HF+BRR, increased a probiotic bacteria in the gut.
Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Oryza , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Insulina , Inflamación , Ratones Endogámicos C57BLRESUMEN
Persulfate (PS, S2O82-) activation through transition metal sulfides (TMS) has gained increasing attention since it can decompose a wide variety of refractory halogenated organic compounds in groundwater and wastewater. However, the processes of PS activation by TMS and particularly the formation of â¢OH radical under anoxic and acidic conditions (pH â¼2.8) remain elusive. Herein, by employing mixed redox-couple-involved chalcopyrite (CuFeS2) (150 mg/L) nanoparticles for PS (3.0 mM) activation, 96% of trichloroethylene was degraded within 120 min at pH 6.8 under visible light irradiation. The combination of experimental studies and theoretical calculations suggested that the Cu(I)/Fe(III) mixed redox-couple in CuFeS2 plays a crucial role to activate PS. Cu(I) acted as an electron donor to transfer electron to Fe(III), then Fe(III) served as an electron transfer bridge as well as a catalytic center to further donate this received electron to the O-O bond of PS, thus yielding SO4â¢- for trichloroethylene oxidation. Moreover, for the first time, â¢OH radicals were found to form from the catalytic hydrolysis of PS onto CuFeS2 surface, where S2O82- anion was hydrolyzed to yield H2O2 and these ensuing H2O2 were further transformed into â¢OH radicals via photoelectron-assisted O-O bond cleavage step. Our findings offer valuable insights for understanding the mechanisms of PS activation by redox-couple- involved TMS, which could promote the design of effective activators toward PS decomposition for environmental remediation.
Asunto(s)
Cobre/química , Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Catálisis , Compuestos Férricos , Peróxido de Hidrógeno/química , Hidrólisis , Oxidación-Reducción , Sulfatos/química , Sulfuros/química , Contaminantes Químicos del Agua/químicaRESUMEN
Nine steaming nine sun-drying is a traditional processing technology for food or medicinal materials. The dynamic changes of the proximate composition, protein structure and volatile compounds during nine-time steaming and sun-drying of black soybeans (BS) were studied. The proximate composition results showed that the content of protein, carbohydrate and fat of BS decreased after processing, whereas the relative content of amino acids remained basically unchanged. Protein structure was evaluated using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet absorption spectroscopy (UV) and Fluorescence spectroscopy. FT-IR result revealed that the relative contents of ß-sheet and ß-turn of the secondary structure of black soybean protein isolate (BSPI) decreased but the relative contents of α-helix and random coil increased after steaming and sun-drying. The results of UV and fluorescence spectroscopy confirmed changes in the protein conformation. In addition, SPME-GCMS analysis demonstrated that hydrocarbons, alcohols and aldehydes were the main volatile compounds. The relative contents of 1-octen-3-ol and hexanal, which are the main sources of beany flavor decreased significantly compared with raw BS. Principal component analysis (PCA) results showed that the volatile compounds of nine steamed and nine sun-dried BS could be well distinguished during the process. These findings may therefore provide a scientific basis for the application of nine-time steamed and sun-dried BS in food industry and contribute to the understanding of process-induced chemical transformations in this ancient processing technique.