Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38665045

RESUMEN

The research of cathode materials for water-based zinc ion batteries (ZIBs) is very hot because the current mainstream electrode makes it difficult to meet the requirements of high specific discharge capacity and maintain a stable structure in the electrochemical process. In this work, the cathode properties are adjusted by the modification idea of morphology regulation and heterojunction construction. The simple hydrothermal method is used to prepare the hollow bimetallic heterojunction nanospheres, and their electrochemical properties as cathode materials for ZIBs are studied for the first time. Herein, the optimized cathode delivers high-rate performance and long-term cycling stability (∼98.9% Coulombic efficiency at 0.1 A g-1 after 200 cycles). The results indicate that the hollow bimetallic heterojunction nanospheres can support the material structure and provide a wide Zn2+ migration channel. The excellent performance is because hollow heterojunction bimetallic sulfides can provide abundant catalytic active sites, improve the mobility of electrons, and enhance the battery performance fundamentally. Therefore, we firmly believe that the combination of the different modification ideas can coordinate to adjust the electrode performance of ZIBs, enriching the electrode types and expanding the energy system application range.

2.
Int J Biol Macromol ; 264(Pt 2): 130661, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458292

RESUMEN

Lung cancer is a major malignant cancer with low survival rates, and early diagnosis is crucial for effective treatment. Herein, a biosensing platform that is self-powered derived from a capacitor-coupled EBFC has been developed for ultra-sensitive real-time identification of microRNA-21 (miRNA-21) with the assistance of a mobile phone. The flexible substrate of the platform is prepared on a carbon paper modified with graphdiyne and gold nanoparticles. The biosensor employs DNAzyme-mediated dual strand displacement amplification, which enhances the signal output intensity of the EBFC and improves selectivity. The coupling of the capacitor with the EBFC significantly amplifies the sensing signal, causing a 10.6-fold surge in current respond and further improving the sensitivity of the sensing platform. The established detection approach demonstrates a linear relationship varied from 0.0001 to 10,000 pM, with a sensitivity down to 32.3 aM as the minimum detectable limit, which has been effectively utilized for detecting miRNA-21 in practical samples. This sensing system provides strong support for the construction of portable detection devices, and the strategy of the platform construction provides an effective method for ultra-sensitive and accurate detection of miRNA, holding great potential in clinical diagnosis, prognosis evaluation, and drug screening for cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias Pulmonares , Nanopartículas del Metal , MicroARNs , Humanos , Neoplasias Pulmonares/diagnóstico , Teléfono Inteligente , Oro , MicroARNs/genética , Técnicas Biosensibles/métodos , Biomarcadores , Límite de Detección , Técnicas Electroquímicas
3.
J Hazard Mater ; 469: 134005, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484660

RESUMEN

Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.


Asunto(s)
Carpas , Branquias , Animales , Branquias/metabolismo , Carpas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Peces/metabolismo , Inmunidad Innata , Dieta/veterinaria , Homeostasis , Glucosa/metabolismo , Alimentación Animal/análisis
4.
Nanoscale ; 16(2): 657-663, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38093620

RESUMEN

Heterostructured materials have great potential as cathodes for zinc-ion batteries (ZIBs) because of their fast Zn2+ transport channels. Herein, hollow MoS2@C@Cu2S heterostructures are innovatively constructed using a template-engaged method. The carbon layer improves the electrical conductivity, provides a high in situ growth area, and effectively restricts volume expansion during the recycling process. MoS2 nanosheets are grown on the surfaces of hollow C@Cu2S nanocubes using the in situ template method, further expanding the specific surface area and exposing more active sites to enhance the electrical conductivity. As expected, an admirable reversible capacity of 197.2 mA h g-1 can be maintained after 1000 cycles with a coulombic efficiency of 91.1%. Therefore, we firmly believe that this work points the way forward for high-performance materials design and energy storage systems.

5.
Biosens Bioelectron ; 248: 115962, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150801

RESUMEN

Thalassemia is a globally prevalent single-gene blood disorder, with nearly 7% of the world's population being carriers. Therefore, the development of specific and sensitive methods for thalassemia detection holds significant importance. Herein, a sandwich-type electrochemical/colorimetric dual-mode biosensor is developed based on gold nanoparticles (AuNPs)/graphdiyne (GDY) and DNA nanoframeworks for ultra-sensitive detection of CD142 gene associated with sickle cell anemia. Utilizing AuNPs/GDY as the substrate electrode, the fabricated sandwiched DNA nanoframework not only improves selectivity but also introduces numerous signal probes to further amplify the output signal. In the electrochemical mode, glucose oxidase catalyzes the oxidation of glucose, generating electrons that are transferred to the biocathode for a reduction reaction, resulting in an electric signal proportional to the target concentration. In the colorimetric mode, glucose oxidase catalyzes the generation of H2O2 from glucose, and with the aid of horseradish peroxidase, H2O2 oxidizes 3,3',5,5'-tetramethylbenzidine to produce a colored product, enabling colorimetric detection of the target. The dual-mode biosensor demonstrates a detection range of 0.0001-100 pM in the electrochemical mode and a detection range of 0.0001-10,000 pM in the colorimetric mode. The detection limit in the electrochemical mode is determined to be 30.4 aM (S/N=3), while in the colorimetric mode is of 35.6 aM (S/N=3). This dual-mode detection achieves ultra-sensitive detection of CD142, demonstrating broad prospects for application.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Talasemia , Humanos , Oro , Peróxido de Hidrógeno , Glucosa Oxidasa , Límite de Detección , Técnicas Biosensibles/métodos , ADN , Glucosa , Técnicas Electroquímicas/métodos
6.
Anal Chim Acta ; 1280: 341876, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37858559

RESUMEN

Research has shown that microRNAs exhibit regular dysregulation in cancers, making them potential biomarkers for cancer diagnosis. However, achieving specific and sensitive detection of microRNAs has been a challenging task. To address this issue, two-dimensional networked graphdiyne is used to fabricate a self-powered biosensor and establish a new approach for ultra-responsive dual-mode detection of miRNA-141, a breast cancer biomarker. This method detects miRNA-141 using both electrochemical and colorimetric modes by measuring the output electrical signal of an enzyme-based biofuel cell and the RGB blue value of the electrolyte solution. Tetrahedral DNA and DNA nanorods also are immobilized on the electrode as a biocathode and methylene blue is used as the electron acceptor, which is fixed in the DNA phosphate backbone through electrostatic adsorption. The bioanode catalyzes the oxidation of glucose to produce electrons, which reduces methylene blue to its reduced form, resulting in a high open-circuit voltage (EOCV) and a highger RGB Blue value, enabling dual-mode detection. A reliable linear correlation is observed between EOCV values and miRNA-141 concentrations ranging from 0.0001 to 100 pM, with a detection limit of 21.9 aM (S/N = 3). Additionally, the colorimetric mode also demonstrates a reliable linear correlation with a concentration range of 0.0001-10000 pM, and this method can detect a concentration of 22.2 aM (S/N = 3). This innovative research realizes sensitive and accurate determination of miRNA-141 and provides an important new method for cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , MicroARNs , Nanotubos , Humanos , Femenino , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Azul de Metileno , ADN , Técnicas Biosensibles/métodos , Límite de Detección , Técnicas Electroquímicas/métodos
7.
Anal Chem ; 95(44): 16374-16382, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37871958

RESUMEN

Based on the controllable instantaneous self-assembly ability of long-chain branched DNA nanostructures and the synergistic effect between nucleic acid amplification without enzymes, a highly sensitive and highly specific self-powered biosensing platform is developed. Two-dimensional graphdiyne is prepared, modified on flexible carbon cloth, and then functionalized with gold nanoparticles. When DNA mi-tubes are applied on it, target thalassemia gene CD122 triggers a dual-catalytic hairpin assembly reaction. The generated nanoscale DNA is precisely captured by the DNA mi-tube, exposing binding sites and activating the hybridization chain reaction to form long-chain branched DNA. Double-stranded DNA, along with dendritic DNA carrying a large number of guanine bases, precisely captures the signal molecule methylene blue (MB), generating a significant electrochemical signal. The redox reaction of MB also causes a proportional change in the system's color, achieving a colorimetric detection functionality. An efficient dual-mode self-powered sensing platform, therefore, is established for detecting the thalassemia gene CD122. The linear response range of target concentration to open-circuit voltage and RGB Blue value is 0.0001-10,000 pM. The detection limit under electrochemical mode is 36.3 aM (S/N = 3), and under colorimetric mode, it is as low as 12.1 aM (S/N = 3). The new method exhibits high sensitivity, excellent selectivity, and high accuracy, providing a universal strategy for designing novel biosensing platforms that can be extended to the detection of other biomolecules.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Talasemia , Humanos , Oro/química , Tecnología de Seguimiento Ocular , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , ADN/química , Azul de Metileno/química , Límite de Detección , Técnicas Electroquímicas
8.
Anal Chem ; 95(37): 14052-14060, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37672636

RESUMEN

One of the highly attractive research directions in the electrochemiluminescence (ECL) field is how to regulate and improve ECL efficiency. Quantum dots (QDs) are highly promising ECL materials due to their adjustable luminescence size and strong luminous efficiency. MoS2 NSs@QDs, an ECL emitter, is synthesized via hydrothermal methods, and its ECL mechanism is investigated using cyclic voltammetry and ECL-potential curves. Then, a stable and vertical attachment of a triplex DNA (tsDNA) probe to the MoS2 nanosheets (NSs) is applied to the electrode. Next, an innovative ECL sensor is courageously empoldered for precise and ultrasensitive detection of target miRNA-199a through the agency of ECL-resonance energy transfer (RET) strategy and a dextrous target-initiated catalytic three-arm DNA junction assembly (CTDJA) based on a toehold strand displacement reaction (TSDR) signal amplification approach. Impressively, the ingenious system not only precisely regulates the distance between energy donor-acceptor pairs leave energy less loss and more ECL-RET efficiency, but also simplifies the operational procedure and verifies the feasibility of this self-assembly process without human intervention. This study can expand MoS2 NSs@QDs utilization in ECL biosensing applications, and the proposed nucleic acid amplification strategy can become a miracle cure for ultrasensitive detecting diverse biomarkers, which helps researchers to better study the tumor mechanism, thereby unambiguously increasing cancer cure rates and reducing the risk of recurrence.


Asunto(s)
ADN Catalítico , MicroARNs , Humanos , Molibdeno , Catálisis , Electrodos
9.
Anal Chim Acta ; 1278: 341713, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37709456

RESUMEN

Thalassemia is one of the most common monogenic diseases, which seriously affects human growth and development, cardiovascular system, liver, etc. There is currently no effective cure for this disease, making screening for thalassemia particularly important. Herein, a self-powered portable device with high sensitivity and specificity for efficiently screening of low-level thalassemia is developed which is enabled with AuNPs/MoS2@C hollow nanorods and triple nucleic acid amplification technologies. It is noteworthy that AuNPs/MoS2@C electrode shows the advantages of high electrocatalytic activity, fast carrier migration rate and large specific surface area, which can significantly improve the stability and output signal of the platform. Using high-efficiency tetrahedral DNA as the probe, the target CD122 gene associated with thalassemia triggers a catalytic hairpin assembly reaction to achieve CD122 recycling while providing binding sites for subsequent hybridization chain reaction, greatly improving the detection accuracy and sensitivity of the device. A reliable electrochemical/colorimetric dual-mode assay for CD122 is then established, with a linear response range of 0.0001-100 pM for target concentration and open circuit voltage, and the detection limit is 78.7 aM (S/N = 3); a linear range of 0.0001-10000 pM for CD122 level and RGB Blue value, with a detection limit as low as 58.5 aM (S/N = 3). This method achieves ultra-sensitive and accurate detection of CD122, providing a new method for the rapid and accurate screening of thalassemia.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Talasemia , Humanos , Oro , Molibdeno , ADN/genética , Talasemia/diagnóstico , Talasemia/genética
10.
Anal Chem ; 95(35): 13305-13312, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37608571

RESUMEN

In this work, an ingenious sensor technology was established by integrating the EBFCs on a flexible paper strip carrier (PE) that was used for simultaneous detection of tumor markers in complex samples. Adopting high performance ultrathin graphdiyne (U-GDY) as the substrate can increase the enzyme load, accelerate the electron transfer rate, and significantly enhance the detection sensitivity. A homologous DNA nanomanager strategy cleverly uses signal switches to recycle and amplify target miRNAs, while the smartphone receives real-time instantaneous current values to realize multivariate detection. Electrochemical data show that the detection limits (LODs) of miRNA-21 and miRNA-155 are 0.09 and 0.15 fM in the wide concentration range. The results confirm that the tailored sensor platform provides a strategy for the early cancer diagnosis and lays the foundation for the construction of a flexible wearable platform.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Teléfono Inteligente , Neoplasias/diagnóstico , Biomarcadores de Tumor , ADN
11.
Biosens Bioelectron ; 237: 115557, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37531892

RESUMEN

MicroRNA-21 (miRNA-21) is currently the only known oncogenic miRNA that is upregulated in almost all malignant tumors and exhibits a broad spectrum of tumor recognition characteristics. It holds significant value in the early diagnosis, malignant degree assessment, and prognostic evaluation of tumors. In this study, a novel dual-mode self-powered sensing platform is developed using Au nanoparticles/graphdiyne as the electrode substrate and combined with DNA nanoring for highly sensitive and specific detection of miRNA-21. The DNA nanoring structure, which is easy to prepare and contains multiple recognition sites, induces significant electrochemical/colorimetric signal responses of the signaling molecule methylene blue. Under optimal conditions, the linear ranges of the electrochemical and colorimetric detection modes of this self-powered sensor are 0.1 fM-100 pM and 0.1 fM-10 nM, respectively, with the detection limits of 35.1 aM and 61.6 aM (S/N=3). This strategy provides a new reference for the sensitive detection of microRNA and has immense potential for application in the screening and detection of clinical nucleic acid diseases.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Biomarcadores de Tumor/genética , Oro/química , Nanopartículas del Metal/química , ADN/química , MicroARNs/genética , Límite de Detección , Técnicas Electroquímicas
12.
Anal Chim Acta ; 1271: 341413, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37328239

RESUMEN

Two-dimensional carbon-coated molybdenum disulfide (MoS2@C) hollow nanorods are combined with nucleic acid signal amplification strategies and DNA hexahedral nanoframework to construct a novel self-powered biosensing platform for ultra-sensitive dual-mode detection of tumor suppressor microRNA-199a. The nanomaterial is applied on carbon cloth and then modified with glucose oxidase or using as bioanode. A large number of double helix DNA chains are produced on bicathode by nucleic acid technologies including 3D DNA walker, hybrid chain reaction and DNA hexahedral nanoframework to adsorb methylene blue, producing high EOCV signal. Methylene blue also is reduced and an increased RGB Blue value is observed. For microRNA-199a detection, the assay shows a extensive linear range of 0.0001-100 pM with a low detection limit of 4.94 amol/L (S/N = 3). The method has been applied to the detection of actual serum samples, providing a novel method for the accurate and sensitive detection of tumor markers.


Asunto(s)
Técnicas Biosensibles , Neoplasias Hepáticas , MicroARNs , Nanotubos , Humanos , Molibdeno , Azul de Metileno , Técnicas Biosensibles/métodos , ADN , Carbono , Límite de Detección , Técnicas Electroquímicas/métodos
13.
Anal Chim Acta ; 1267: 341333, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257968

RESUMEN

Acute myocardial infarction (AMI) is acute necrosis of a portion of the myocardium caused by myocardial ischemia, which seriously threatens people's health and life safety. Its early diagnosis is a difficult problem in clinical medicine. Research has found that the abnormal expression of microRNA-199a (miR-199a) and microRNA-499 (miR-499) was closely related to AMI disease. In this work, we took advantage of the structural advantages of nitrogen-doped hollow carbon nanospheres (N-HCNSs) to design an ultra-sensitive, portable real-time monitoring visual self-powered biosensor system, which based on dual-target miRNAs triggered catalytic hairpin assembly (CHA) for sensitive detection of miR-199a and miR-499. In addition, the capacitor and the smartphone are introduced into the system to realize the secondary improvement of system sensitivity and portable real-time visual monitoring. Under optimized conditions, in the linear range of 0.1-100000 aM, the detection limits of miR-199a and miR-499 are 0.031 and 0.027 aM, respectively. At the same time, the ultra-sensitive detection of miRNAs is realized in the serum sample, and the recovery rate of miR-199a and miR-499 are 98.0-106.0% (RSD: 0.6-8.1%) and 94.0-109.7% (RSD: 1.8-7.7%), respectively. The method is simple, sensitive and can be used for real-time tracking and portable monitoring of related diseases.


Asunto(s)
MicroARNs , Infarto del Miocardio , Nanosferas , Humanos , Nitrógeno , Carbono , Infarto del Miocardio/diagnóstico
14.
Talanta ; 261: 124656, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209584

RESUMEN

We report here for the first time a self-powered biosensing platform based on graphene/graphdiyne/graphene (GDY-Gr) heterostructure substrate material for ultrasensitive hepatocarcinoma marker (microRNA-21) detection in both electrochemical and colorimetric test modes. The dual-mode signal intuitively displayed on a smartphone fundamentally improves the detection accuracy. In electrochemical mode, the calibration curve is established in the linear range of 0.1-10000 fM, and the detection limit is as low as 0.333 fM (S/N = 3). Simultaneously, colorimetric analysis of the miRNA-21 is realized by using ABTS as an indicator. The detection limit is confirmed as 32 fM (S/N = 3), and miRNA-21 of concentration from 0.1 pM to 1 nM exhibit a linear relationship with R2 = 0.9968. Overall, the combination of GDY-Gr and multiple signal amplification strategy significantly improved the sensitivity by 310 times compared with traditional enzymatic biofuel cells (EBFCs) based detection platform, showing broad application prospects for on-site analysis and future mobile medical services.


Asunto(s)
Técnicas Biosensibles , Grafito , MicroARNs , MicroARNs/análisis , Grafito/química , Técnicas Electroquímicas , Límite de Detección
15.
Biosens Bioelectron ; 232: 115310, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087985

RESUMEN

To achieve sensitive detection of low-content microRNA, photoelectrochemical/electrochromic dual-mode sensor with intrinsically low background signal has been developed, but the two detection modules are usually designed with a series-connected structure, which may cause signal interference and thus affect the detection reliability. To solve the above problems, a decoupled dual-mode bioassay for sensitive miRNA-21 detection with high reliability is constructed in this work, by selecting two capacitors to realize parallel amplification for the two detection modules, supplemented with a 3D DNA nanoring photoelectrode signal amplification strategy. The complete decoupling of the two detection modes, photoelectrochemical and electrochromic, as well as the use of digital multimeter, improves the reliability and accuracy of the sensor, and also frees it from dependence on electrochemical workstation, making detection more intuitive and faster. With simple structure, low cost, good reproducibility, high sensitivity, and easy operation, the capacitor-parallel-amplified decoupled photoelectrochemical/electrochromic dual-mode bioassay has broad application prospect in on-site point-of-care detection of diseases and low-cost clinical diagnosis. The design idea of decoupled dual-mode detector can also be extended to the construction of other dual-mode methods.


Asunto(s)
Técnicas Biosensibles , MicroARNs , MicroARNs/genética , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Límite de Detección
16.
Anal Chim Acta ; 1239: 340696, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628764

RESUMEN

A highly sensitivity self-powered biosensor is developed based on T7 exonuclease (T7 Exo) and 3D DNA walker induced rolling circle amplification (RCA) for electrochemical/colorimetric dual-mode detection of microRNA-21 (miRNA-21) with improved reliability. Taking its advantage of fascinating properties, such as high structure defects and good conductivity, graphdiyne is prepared and used to prepare high-performance enzyme biofuel cell. T7 Exo-assisted 3D DNA walker target recognition triggers RCA reaction to obtain a significantly amplified signal response. A capacitor is integrated to the enzyme biofuel cell to further amplify the electrochemical output signal of the self-powered biosensor. In detection system, glucose oxidase catalyzes glucose oxidation to produce hydrogen peroxide, and 3,3',5,5'-tetramethylbenzidine (TMB) is then catalyzed to generate colored products, so as to achieve the colorimetric detection of the target. Analysis signals of diverse modes are recorded independently. Consequently, detection of microRNA with improved reliability and wider signal response range are achieved by electrochemical/colorimetric dual-mode with detection limits of 0.15 and 33 fM (S/N = 3) respectively. In addition, the proposed self-powered biosensor successfully applied for the detection of miRNA-21 in human serum samples, confirming its practical applicability in clinical diagnosis. It is powerfully anticipated the proposed self-powered biosensor possesses great potential to be applied to other biomedical domains.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , MicroARNs/análisis , Reproducibilidad de los Resultados , Límite de Detección , ADN/genética , ADN/análisis , Técnicas de Amplificación de Ácido Nucleico , Técnicas Electroquímicas
17.
Anal Chim Acta ; 1239: 340702, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628768

RESUMEN

A self-powered biosensor (SPB) was constructed for the ultra-sensitive detection of microRNA-155 (miR-155) by combining a capacitor/enzymatic biofuel cell (EBFC), a strategy of rolling circle amplification (RCA) and a digital multimeter (DMM). The experimental results show that the sensitivity of the assembled EBFC-SPB can reach 15.85 µA/pM with the action of matching capacitor, which is 513% of that without capacitor (3.09 µA/pM). This achieves the first signal amplification. Furthermore, when the target miR-155 triggers RCA, electrons are continuous generated and flow to the biocathode through the external circuit to catalyze the reduction of oxygen and release [Ru(NH3)6]3+ electron acceptor. This achieves the second signal amplification. Finally, DMM is used to convert the signal into instantaneous current and amplify it for real-time reading. This achieves the third signal amplification. Therefore, the limit of detection (LOD) of the developed biosensor is as low as 0.17 fM (S/N = 3), and the linear range is between 0.5 fM and 10,000 fM, indicating that the EBFC-SPB has a broad application prospect for cancer marker of miR-155 with ultrasensitive detection.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas Biosensibles , MicroARNs , Límite de Detección , Técnicas Biosensibles/métodos , Catálisis , Técnicas Electroquímicas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos
18.
Anal Chim Acta ; 1240: 340754, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641150

RESUMEN

A novel self-powered biosensor is engineered by the integration of DNAzyme walker and AuNPs/graphdiyne biosensing interface, realizing sensitive detection of target microRNA. The cleverly constructed DNAzyme walker with outstanding signal transduction ability to obtain an amplified signal response. In addition, the AuNPs/graphdiyne significantly improves electron transport speed of biosensing interface for improving the sensitivity of biosensor. A dynamic linear range of 0.05 fM-10 pM with a low detection limit of 0.015 fM (S/N = 3) is obtained by utilizing the self-powered biosensor. Meanwhile, the developed self-powered biosensor is capable of assaying miRNA-21 in human serum samples with satisfactory recoveries. This strategy provides a valid method for the sensitive microRNA detection, and shows great potential in point-care detection of tumor biomarker.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Nanopartículas del Metal , MicroARNs , Humanos , MicroARNs/genética , Oro , Límite de Detección , Técnicas Biosensibles/métodos , Técnicas Electroquímicas
19.
Biosens Bioelectron ; 222: 114933, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36470063

RESUMEN

A real-time self-powered biosensor is designed for ultrasensitive detection of microRNA-21 based on electrochemical energy device capacitor and target-induced recycling double amplification strategy, which greatly improves the output signal by converting a small number of targets into two glucose oxidase labeled output strand DNAs, and the squeezed-out output strand is recycled by the cathode to fix more signal [Ru(NH3)6]3+ to further improve the detection signal. A digital multimeter (DMM) is connected to computer for real-time displaying the output signal of the self-powered biosensing system, which improves the accuracy of the sensing platform. The sensitivity of the proposed biosensor is 116.15 µA/pM for target microRNA-21, which is 32.26 times higher than that of pure EBFC (3.6 µA/pM). The target concentration is proportional to the open-circuit voltage value in a wide linear range of 0.1-10000 fM with a low detection limit of 0.04 fM (S/N = 3). The method shows high sensitivity and excellent selectivity, and can be applied to detect tumor marker microRNA-21 in biological matrix.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , ADN , Electrodos , Límite de Detección
20.
J Colloid Interface Sci ; 630(Pt B): 426-435, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334479

RESUMEN

Pure phase MoS2 has low conductivity, but with high theoretical specific capacity, and WS2 possesses a high intrinsic conductivity, but suffer from rapid capacity fading. Predictably, the combination of these two transition metal sulfide compounds can complement each other and improve electrochemical performance comprehensively. Whereas, bimetallic phase sulfide of MoS2 and WS2 composites have not been researched in SIBs. In this paper, 1T metallic phase MoS2 and WS2 vertically growth on flexible carbon cloth (CC) surface (1T-MoS2@WS2@CC) by a simple hydrothermal method. The electrochemical performance was improved by heterojunction synergistic effect and the enhanced interlayers of the composite material. Specifically, the superelevation reversible capacity of 529.4 mAh/g can be obtained even after 100 cycles at the current density of 100 mA g-1, and the 259.2 mAh/g capacity can be maintained even at high current density of 1000 mA g-1 after 60 cycles. Besides, the designed 1T-MoS2@WS2@CC composite material has excellent rate performance and cycle stability which are guarantee for battery core performance. Thus, there is every reason to believe that the advanced 1T-MoS2@WS2@CC electrode material has great potential in the future high performance energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA