RESUMEN
Patient-derived xenograft (PDX) models faithfully preserve the histological and genetic characteristics of the primary tumor and maintain its heterogeneity. Pharmacodynamic results based on PDX models are highly correlated with clinical practice. Anaplastic thyroid carcinoma (ATC) is the most malignant subtype of thyroid cancer, with strong invasiveness, poor prognosis, and limited treatment. Although the incidence rate of ATC accounts for only 2%-5% of thyroid cancer, its mortality rate is as high as 15%-50%. Head and neck squamous cell carcinoma (HNSCC) is one of the most common head and neck malignancies, with over 600,000 new cases worldwide each year. Herein, detailed protocols are presented to establish PDX models of ATC and HNSCC. In this work, the key factors influencing the success rate of model construction were analyzed, and the histopathological features were compared between the PDX model and the primary tumor. Furthermore, the clinical relevance of the model was validated by evaluating the in vivo therapeutic efficacy of representative clinically used drugs in the successfully constructed PDX models.
Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma Anaplásico de Tiroides/genética , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Tiroides/genéticaRESUMEN
BACKGROUND: Rearing systems can affect livestock production directly, but whether they have effects on intestinal growth states and ceca microorganisms in ducks is largely unclear. The current study used Nonghua ducks to estimate the effects of rearing systems on the intestines by evaluating differences in intestinal growth indices and cecal microorganisms between ducks in the floor-rearing system (FRS) and net-rearing system (NRS). RESULTS: The values of relative weight (RW), relative length (RL) and RW/RL of the duodenum, jejunum, ileum and ceca in the FRS were significantly higher than those in the NRS during weeks 4, 8 and 13 (p < 0.05). A total of 157 genera were identified from ducks under the two systems, and the dominant microorganisms in both treatments were Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria at the phylum level. The distribution of microorganisms in the ceca of the two treatments showed significant separation during the three time periods, and the value of the Simpson index in the FRS was significantly higher than that in the NRS at 13 weeks (p < 0.05). Five differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 4, seven differential microorganisms and 25 differential metabolic pathways were found in the ceca at week 8, and four differential microorganisms and two differential metabolic pathways were found in the ceca at week 13. CONCLUSIONS: The rearing system influences duck intestinal development and microorganisms. The FRS group had higher intestinal RL, RW and RW/RL and obviously separated ceca microorganisms compared to those of the NRS group. The differential metabolic pathways of cecal microorganisms decreased with increasing age, and the abundance of translation pathways was higher in the NRS group at week 13, while cofactor and vitamin metabolism were more abundant in the FRS group.
Asunto(s)
Ciego , Patos , Animales , Bacterias , Ciego/microbiología , Patos/microbiología , Íleon/microbiología , IntestinosRESUMEN
There are great differences in physiological and biological functions between animals of different sexes. However, whether there is a consensus between sexes in duck intestinal development and microorganisms is still unknown. The current study used Nonghua ducks to estimate the effect of sex on the intestine by evaluating differences in intestinal growth indexes and microorganisms. The intestines of male and female ducks were sampled at 2, 5, and 10 wk from the duodenum, jejunum, ileum, and cecum. Then, the intestinal length and weight were measured, the morphology was observed with HE staining, and the intestinal content was analyzed by 16S rRNA sequencing. The results showed that male ducks have shorter intestinal lengths with higher relative weights/relative lengths. The values of jejunal villus height (VH)/crypt depth (CD) of female ducks were significantly higher at 2 wk, whereas the jejunal VH/CD was significantly lower at 10 wk. There was obvious separation of microorganisms in each intestinal segment of ducks of different sexes at the 3 time periods. The dominant phyla at different stages were Firmicutea, Proteobacteria, Bacteroidetes, and Actinobacteria. The duodenal Chao index at the genus level of male ducks was significantly higher at 10 wk than that of female ducks. Significantly different genera were found only in the jejunum, and the abundances of Escherichia_Shigella, Pseudomonas, Clostridium_sensu_stricto_1, Sphingomonas, and Desulfovibrio in male ducks were higher than those in female ducks, whereas the abundance of Rothia was lower, and the abundance of viral infectious diseases, lipid metabolism, metabolism of terpenoids and polyketides, parasitic infectious diseases, xenobiotic biodegradation and metabolism, cardiovascular disease, and metabolism of other amino acids in male ducks were higher than that in female ducks, whereas gene folding, sorting and degradation pathways, and nucleotide metabolism were lower. This study provides a basic reference for the intestinal development and microbial symbiosis of ducks of different sexes.