Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 31709-31718, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38836706

RESUMEN

Air-processed perovskite solar cells (PSCs) with high photoelectric conversion efficiency (PCE) can not only further reduce the production cost but also promote its industrialization. During the preparation of the PSCs in ambient air, the contact of the buried interface not only affects the crystallization of the perovskite film but also affects the interface carrier transport, which is directly related to the performance of the device. Here, we optimize the buried interface by introducing 3-mercaptopropyltrimethoxysilane (MPTMS, (CH3O)3Si(CH2)3SH) on the nickel oxide (NiOx) surface. The crystallization of the perovskite film is improved by enhancing surface hydrophobicity; besides, the SH-based functional group of MPTMS passivates the uncoordinated lead at the interface, which effectively reduces the defects at the bottom interface of perovskite and inhibits the nonradiative recombination at the interface. Moreover, the energy level between the NiOx layer and the perovskite layer is better matched. Based on multiple functions of MPTMS modification, the open circuit voltage of the device is obviously improved, and efficient air-processed methylamine-free (MA-free) PSCs are realized with PCE reaching 21.0%. The device still maintains the initial PCE of 85% after 1000 h aging in the glovebox. This work highlights interface modification in air-processed MA-free PSCs to promote the industrialization of PSCs.

2.
ACS Nano ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935688

RESUMEN

Achieving high power conversion efficiency in perovskite solar cells (PSCs) heavily relies on fabricating homogeneous perovskite films. However, understanding microscopic-scale properties such as current generation and open-circuit voltage within perovskite crystals has been challenging due to difficulties in quantifying intragrain behavior. In this study, the local current intensity within state-of-the-art perovskite films mapped by conductive atomic force microscopy reveals a distinct heterogeneity, which exhibits a strong anticorrelation to the external biases. Particularly under different external bias polarities, specific regions in the current mapping show contrasting conductivity. Moreover, grains oriented differently exhibit varied surface potentials and currents, leading us to associate this local current heterogeneity with the grain orientation. It was found that the films treated with isopropanol exhibit ordered grain orientation, demonstrating minimized lattice heterogeneity, fewer microstructure defects, and reduced electronic disorder. Importantly, devices exhibiting an ordered orientation showcase elevated macroscopic optoelectronic properties and boosted device performance. These observations underscore the critical importance of fine-tuning the grain homogenization of perovskite films, offering a promising avenue for further enhancing the efficiency of PSCs.

3.
BMC Med ; 22(1): 226, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840198

RESUMEN

BACKGROUND: Previous studies have linked adolescent motherhood to adverse neurodevelopmental outcomes in offspring, yet the sex-specific effect and underlying mechanisms remain unclear. METHODS: This study included 6952 children aged 9-11 from the Adolescent Brain Cognitive Development study. The exposed group consisted of children of mothers < 20 years at the time of birth, while the unexposed group was composed of children of mothers aged 20-35 at birth. We employed a generalized linear mixed model to investigate the associations of adolescent motherhood with cognitive, behavioral, and autistic-like traits in offspring. We applied an inverse-probability-weighted marginal structural model to examine the potential mediating factors including adverse perinatal outcomes, family conflict, and brain structure alterations. RESULTS: Our results revealed that children of adolescent mothers had significantly lower cognitive scores (ß, - 2.11, 95% CI, - 2.90 to - 1.31), increased externalizing problems in male offspring (mean ratio, 1.28, 95% CI, 1.08 to 1.52), and elevated internalizing problems (mean ratio, 1.14, 95% CI, 0.99 to 1.33) and autistic-like traits (mean ratio, 1.22, 95% CI, 1.01 to 1.47) in female. A stressful family environment mediated ~ 70% of the association with internalizing problems in females, ~ 30% with autistic-like traits in females, and ~ 20% with externalizing problems in males. Despite observable brain morphometric changes related to adolescent motherhood, these did not act as mediating factors in our analysis, after adjusting for family environment. No elevated rate of adverse perinatal outcomes was observed in the offspring of adolescent mothers in this study. CONCLUSIONS: Our results reveal distinct sex-specific neurodevelopmental outcomes impacts of being born to adolescent mothers, with a substantial mediating effect of family environment on behavioral outcomes. These findings highlight the importance of developing sex-tailored interventions and support the hypothesis that family environment significantly impacts the neurodevelopmental consequences of adolescent motherhood.


Asunto(s)
Trastorno Autístico , Encéfalo , Cognición , Problema de Conducta , Humanos , Femenino , Masculino , Niño , Encéfalo/crecimiento & desarrollo , Adolescente , Cognición/fisiología , Conflicto Familiar , Madres , Adulto , Embarazo , Adulto Joven , Embarazo en Adolescencia , Factores Sexuales
4.
Adv Sci (Weinh) ; 11(25): e2400962, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38637999

RESUMEN

Tin-lead (Sn-Pb) mixed perovskite with a narrow bandgap is an ideal candidate for single-junction solar cells approaching the Shockley-Queisser limit. However, due to the easy oxidation of Sn2+, the efficiency and stability of Sn-Pb mixed perovskite solar cells (PSCs) still lag far behind that of Pb-based solar cells. Herein, highly efficient and stable FA0.5MA0.5Pb0.5Sn0.5I0.47Br0.03 compositional PSCs are achieved by introducing an appropriate amount of multifunctional Tin (II) oxalate (SnC2O4). SnC2O4 with compensative Sn2+ and reductive oxalate group C2O4 2- effectively passivates the cation and anion defects simultaneously, thereby leading to more n-type perovskite films. Benefitting from the energy level alignment and the suppression of bulk nonradiative recombination, the Sn-Pb mixed perovskite solar cell treated with SnC2O4 achieves a power conversion efficiency of 21.43%. More importantly, chemically reductive C2O4 2- effectively suppresses the notorious oxidation of Sn2+, leading to significant enhancement in stability. Particularly, it dramatically improves light stability.

5.
Nanomaterials (Basel) ; 14(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470768

RESUMEN

The poor film stability of Sn-Pb mixed perovskite film and the mismatched interface energy levels pose significant challenges in enhancing the efficiency of tin-lead (Sn-Pb) mixed perovskite solar cells. In this study, polyvinylpyrrolidone (PVP) is introduced into the PVK perovskite precursor solution, effectively enhancing the overall stability of the film. This improvement is achieved through the formation of robust coordination bonds between the carbonyl (C=O) in the pyrrole ring and the undercoordinated SnII and PbII, thereby facilitating the passivation of defects. Furthermore, the introduction of PVP inhibits the oxidation of tin (Sn), thereby enhancing the n-type characteristics of the perovskite film. This adjustment in the energy level of the PVK perovskite film proves instrumental in reducing interface energy loss, subsequently improving interface charge transfer and mitigating device recombination. Consequently, perovskite solar cells incorporating PVP achieve an outstanding champion power conversion efficiency (PCE) of 21.31%.

6.
Phys Chem Chem Phys ; 26(10): 8299-8307, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38389432

RESUMEN

Considering that the hydrophobicity of PTAA as the surface of an inverted perovskite solar cell (PSC) substrate directly influences the crystallization and top surface properties of perovskite films, dual-interface engineering is a significant strategy to obtain excellent PSCs. PFN-Br was inserted into the PTAA/perovskite interface to ensure close interfacial contact and achieve exceptional crystallization, and then the perovskite top surface was covered with 3-PyAI to further improve its interface property. The mechanism of interaction of PFN-Br and 3-PyAI with perovskites was analyzed through various characterization methods. The results showed that the introduction of a hydrophilic interface layer reduces voids and defects at the bottom of the film. Additionally, the existence of 3-PyAI reduces surface defects, optimizes energy level alignment, and decreases non-radiative recombination, which is beneficial for charge transfer. Consequently, the open circuit voltage (VOC) and fill factor (FF) of the optimized device were greatly enhanced, and the champion device showed a power conversion efficiency (PCE) of 22.07%. The unencapsulated device with PFN-Br&3-PyAI can retain 80% of its initial performance after aging in the air atmosphere (25 °C at a relative humidity (RH) of 25%) for 27 days. Moreover, the reverse bias stability of the device was improved, with the reverse breakdown voltage (VRB) reaching -2 V. This work recommends a dual-interface strategy for efficient and reliable PTAA-based PSCs.

7.
Psychol Med ; 54(6): 1102-1112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997447

RESUMEN

BACKGROUND: COVID-19 lockdowns increased the risk of mental health problems, especially for children with autism spectrum disorder (ASD). However, despite its importance, little is known about the protective factors for ASD children during the lockdowns. METHODS: Based on the Shanghai Autism Early Developmental Cohort, 188 ASD children with two visits before and after the strict Omicron lockdown were included; 85 children were lockdown-free, while 52 and 51 children were under the longer and the shorter durations of strict lockdown, respectively. We tested the association of the lockdown group with the clinical improvement and also the modulation effects of parent/family-related factors on this association by linear regression/mixed-effect models. Within the social brain structures, we examined the voxel-wise interaction between the grey matter volume and the identified modulation effects. RESULTS: Compared with the lockdown-free group, the ASD children experienced the longer duration of strict lockdown had less clinical improvement (ß = 0.49, 95% confidence interval (CI) [0.19-0.79], p = 0.001) and this difference was greatest for social cognition (2.62 [0.94-4.30], p = 0.002). We found that this association was modulated by parental agreeableness in a protective way (-0.11 [-0.17 to -0.05], p = 0.002). This protective effect was enhanced in the ASD children with larger grey matter volumes in the brain's mentalizing network, including the temporal pole, the medial superior frontal gyrus, and the superior temporal gyrus. CONCLUSIONS: This longitudinal neuroimaging cohort study identified that the parental agreeableness interacting with the ASD children's social brain development reduced the negative impact on clinical symptoms during the strict lockdown.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , COVID-19 , Niño , Humanos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/psicología , Estudios de Cohortes , Factores Protectores , COVID-19/prevención & control , Control de Enfermedades Transmisibles , China/epidemiología
8.
Small ; 20(2): e2305736, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37661361

RESUMEN

Though Sn-Pb alloyed perovskite solar cells (PSCs) achieved great progress, there is a dilemma to further increase Sn for less-Pb requirement. High Sn ratio (>70%) perovskite exhibits nonstoichiometric Sn:Pb:I at film surface to aggravate Sn2+ oxidation and interface energy mismatch. Here, ternary metal alloyed (FASnI3 )0.7 (MAPb1- x Znx I3 )0.3 (x = 0-3%) is constructed for Pb% < 30% perovskite. Zn with smaller ionic size and stronger ionic interaction than Sn/Pb assists forming high-quality perovskite film with ZnI6 4- enriched at surface to balance Sn:Pb:I ratio. Differing from uniform bulk doping, surface-rich Zn with lower lying orbits pushes down the energy band of perovskite and adjusts the interface energy for efficient charge transfer. The alloyed PSC realizes efficiency of 19.4% at AM1.5 (one of the highest values reported for Pb% < 30% PSCs). Moreover, stronger bonding of Zn─I and Sn─I contributes to better durability of ternary perovskite than binary perovskite. This work highlights a novel alloy method for efficient and stable less-Pb PSCs.

9.
Small ; 20(5): e2304362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752782

RESUMEN

Atomicforce microscopy (AFM)-based scanning probing techniques, including Kelvinprobe force microscopy (KPFM) and conductive atomic force microscopy (C-AFM), have been widely applied to investigate thelocal electromagnetic, physical, or molecular characteristics of functional materials on a microscopic scale. The microscopic inhomogeneities of the electronic properties of polycrystalline photovoltaic materials can be examined by these advanced AFM techniques, which bridge the local properties of materials to overall device performance and guide the optimization of the photovoltaic devices. In this review, the critical roles of local optoelectronic heterogeneities, especially at grain interiors (GIs) and grain boundaries (GBs) of polycrystalline photovoltaic materials, including versatile polycrystalline silicon, inorganic compound materials, and emerging halide perovskites, studied by KPFM and C-AFM, are systematically identified. How the band alignment and electrical properties of GIs and GBs affect the carrier transport behavior are discussed from the respective of photovoltaic research. Further exploiting the potential of such AFM-based techniques upon a summary of their up-to-date applications in polycrystalline photovoltaic materials is beneficial to acomprehensive understanding of the design and manipulation principles of thenovel solar cells and facilitating the development of the next-generation photovoltaics and optoelectronics.

11.
Chem Commun (Camb) ; 59(54): 8452-8455, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37337770

RESUMEN

The all-inorganic CsPbI3 perovskite presents promising prospects due to its suitable band gap and nonvolatile nature, while serious nonradiative recombination and unmatched energy level alignment hinder its further developments. Here, a facile and effective surface treatment strategy is proposed to modify the CsPbI3 surface with ethanolamine, leading to significantly reduced defects, and ameliorated band alignment and morphology. Consequently, a champion power conversion efficiency of 18.41% with improved stability is achieved for the inverted CsPbI3 solar cells.

12.
Small Methods ; 7(9): e2300377, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37254269

RESUMEN

In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.

13.
J Phys Condens Matter ; 35(36)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37257455

RESUMEN

The identification of electronic processes at the charge-selective contact buried interface is very important for photovoltaic research. The main loss of perovskite solar cell (PeSCs) is generally bound up with its charge transfer layer. Especially, the current record for the highest power conversion efficiency of quasi-two-dimensional (quasi-2D) PeSCs is achieved by inverted device configurations, compared with the efficiency of upright structures. This study investigated, the carrier recombination and charge extraction in quasi-2D PeSCs by leveraging scanning probe microscope technology, steady-state photoluminescence (PL) measurements, and time-resolved PL spectroscopy. The built-in potential in quasi-2D bulk perovskite can be regarded as a budget to hinder energy loss in inverted device configurations. Interface photogenerated recombination in quasi-2D PeSCs can be fully comprehended only when the complete device is under consideration. Our work underlines the significance of considering restructuring loss from the perspective of the complete device instead of individual layers or interfaces in quasi-2D PeSCs.

14.
Phys Chem Chem Phys ; 25(20): 14334-14347, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37183635

RESUMEN

Ever since the invention of solar cells, thermodynamics has been used to assess their performance limits and investigate advances in materials science and photovoltaic technology to reduce the gap between practical efficiencies and thermodynamic limits to photovoltaic energy conversion. By systematically addressing thermodynamic efficiency losses in current photovoltaics, ultrahigh efficiency photovoltaic can be expected. Currently, the non-radiative recombination of some ultrahigh efficient solar cells is almost completely suppressed, and the radiative recombination loss is the key to restricting the further improvement of device performance. This work relates the energy band edge electronic density of states (DOS) of semiconductor absorber and transport layer, excited/transfer state electronic entropy to thermodynamically inevitable energy loss during photoelectric conversion in solar cells. Through comprehensive theoretical analysis and device simulation, it is revealed why solar cells based on semiconductor material with a low DOS have higher Voc. On account of the basic limitations of thermodynamic laws on the energy conversion process, this work reveals a hidden variable that affects the photovoltaic performance and puts forward the band edge DOS engineering as a new dimension in performance optimization of solar cells apart from the traditional material and defect passivation engineering, etc. This work highlights the great importance of DOS engineering for further improving the performance of solar cell devices.

15.
Phys Chem Chem Phys ; 25(13): 9413-9427, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36928894

RESUMEN

As a promising photovoltaic technology, halide perovskite solar cells (PSCs) have recently attracted wide attention. This work presents a systematic simulation of low bandgap formamidinium tin iodide (FASnI3)-based p-n heterojunction PSCs to investigate the effects of multiple optoelectronic variations on the photovoltaic performance. The structures of the simulated devices are n-i-p, electron transport layer-free (ETL-free), hole transport layer-free (HTL-free), and inverted HTL-free. The simulation is conducted with the Solar Cell Capacitance Simulator (SCAPS-1D). The power conversion efficiencies (PCEs) dramatically decrease when the acceptor doping density (NA) of the absorber layer exceeds 1016 cm-3. For all devices, the photovoltaic parameters dramatically decrease when the absorber defect density (Nt) is over 1015 cm-3, and the best absorber layer thickness is 1000 nm. It should be pointed out that the Nt and the interface defect layer (IDL) are the primary culprits that seriously affect the device performance. When the interfacial defect density (Nit) exceeds 1012 cm-3, PCEs begin to decline significantly. Therefore, paying attention to these defect layers is necessary to improve the PCE. Furthermore, the proper conduction band offset (CBO) between the electron transport layer (ETL) and absorber layer positively affects PSCs' performance. These simulation results help fabricate highly efficient and environment-friendly narrow bandgap PSCs.

16.
ACS Appl Mater Interfaces ; 14(32): 36711-36720, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35938542

RESUMEN

N-type tin oxide (SnO2) films are commonly used as an electron transport layer (ETL) in perovskite solar cells (PSCs). However, SnO2 films are of poor quality due to facile agglomeration under a low-temperature preparation method. In addition, energy level mismatch between the SnO2 and perovskite (PVK) layer as well as interfacial charge recombination would cause open-circuit voltage loss. In this work, alkali metal oxalates (M-Oxalate, M = Li, Na, and K) are doped into the SnO2 precursor to solve these problems. First, it is found that the hydrolyzed alkali metal cations tend to change colloid size distribution of SnO2, in which Na-Oxalate with suitable basicity leads to most uniform colloid size distribution and high-quality SnO2-Na films. Second, the electron conductivity is enhanced by slightly agglomerated SnO2-Na, which facilitates the transmission of electrons. Third, alkali metal cations increase the conduction band level of SnO2 in the sequence of K+, Na+, and Li+ to promote band alignment between ETLs and perovskite. Based on the optimized film quality and energy states of SnO2-Na, the best PSC efficiency of 20.78% is achieved with a significantly enhanced open-circuit voltage of 1.10 V. This work highlights the function of alkali metal salts on the colloid particle distribution and energy level modulation of SnO2.

17.
Small ; 18(8): e2105140, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34894082

RESUMEN

In polycrystalline perovskites, grain boundaries (GBs) that isolate grains determine the optoelectronic properties of a semiconductor, and hence affect the photovoltaic performance of a solar cell. Photocurrent and photovoltage are affected by the microscopic structure of perovskites but are difficult to quantify on the intragrain length scale and are often treated as homogeneous within the photoactive layer. Here, the nanoscale through-film and lateral photoresponse of large-grained perovskite are studied by photoconductive atomic force microscopy. Photocurrent collection along GBs relies on the formation of adjacent grains, exhibiting GB to GB heterogeneity. Regarding to the spatially correlated heterogeneity, the photovoltage of grains deduced from the photoresponse curves at specific positions is larger than that of GBs by up to 0.4 V, suggesting that the photovoltage loss mainly originates from the shunting of GBs through the whole perovskite layer. These spatial heterogeneities are alleviated by depositing a capping layer onto the perovskite layer, highlighting the role of the inserted layer between the perovskite and electrode in real solar cells. This research reveals the heterogeneity of GBs and its influence on photovoltage that actually occurs in virtual solar cells, which is crucial for optimizing perovskite-based solar cells.

18.
J Phys Chem Lett ; 12(50): 12098-12106, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34910479

RESUMEN

With their excellent optoelectronic properties, halide perovskite (HP) semiconductors have witnessed successful applications in many fields, such as solar cells, LEDs, photodetectors, transistors, and memristors. Exploiting their fascinating physical nature for the development of single nanodevices with multifunctionalities is significant yet remains challenging. We report a multifunctional device based on the n-perovskite/p-spiro-MeOTAD p-n heterojunction diode that enables the integration of photovoltaic, photodetection, and photosynaptic functions in a single device. The device exhibits a high photoelectronic conversion efficiency (PCE) of 17.64% under AM 1.5G illumination and excellent photodetection characteristics including a low drive voltage of 0.01 V, a short response time of 0.17 s, high switching repeatability, and stability. Coupled with the superior photomemristive effect of the device that can be used for the emulation of short- and long-term memory formation of visual synapses, these results suggest that the HP-based p-n heterojunction devices hold great potential in multifunctional integrated device applications.

19.
J Phys Chem Lett ; 12(9): 2266-2272, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33641332

RESUMEN

We report an electron transport layer-free perovskite solar cell (PSC) without interface engineering, whose key is a p-n heterojunction consisting of ITO/n-type FA0.9Cs0.1PbI3-xClx/p-type spiro-MeOTAD/Ag. The naturally matched energy levels between FA0.9Cs0.1PbI3-xClx and ITO make interface engineering unnecessary. The FA0.9Cs0.1PbI3-xClx film has a wide antisolvent processing window, favoring large-area production. The self-seeding growth method regulates the energy levels and work function of the FA0.9Cs0.1PbI3-xClx film via modulating the shape and distribution of residual PbI2. Interface band bending is confirmed by double-side photoluminescence (PL) measurement. Reduced PL is introduced for unambiguous charge transfer analysis without interference caused by different absorbance. Accordingly, enhanced ITO/perovskite interface energy level alignment and device performance (efficiency of 17.48% and Voc of 1.02 V) are demonstrated. Such simplified but efficient PSCs featuring a wide antisolvent processing window have great potential in practical applications.

20.
iScience ; 23(4): 100981, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32224434

RESUMEN

Environment-friendly manufacturing and mechanical robustness are imperative for commercialization of flexible OSCs as green-energy source, especially in portable and wearable self-powered flexible electronics. Although, the commonly adopted PEDOT:PSS electrodes that are treated with severely corrosive and harmful acid lack foldability. Herein, efficient folding-flexible OSCs with highly conductive and foldable PEDOT:PSS electrodes processed with eco-friendly cost-effective acid and polyhydroxy compound are demonstrated. The acid treatment endows PEDOT:PSS electrodes with high conductivity. Meanwhile, polyhydroxy compound doping contributes to excellent bending flexibility and foldability due to the better film adhesion between PEDOT:PSS and PET substrate. Accordingly, folding-flexible OSCs with high efficiency of 14.17% were achieved. After 1,000 bending or folding cycles, the device retained over 90% or 80% of its initial efficiency, respectively. These results represent one of the best performances for ITO-free flexible OSC reported so far and demonstrate a novel approach toward commercialized efficient and foldable green-processed OSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...