Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Cell ; 36(6): 1887-1900, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37603220

RESUMEN

With the increasingly prominent problem of population aging, osteoarthritis (OA), which is closely related to aging, has become a serious illness affecting the lives and health of elderly individuals. However, effective treatments are still lacking. OA is typically considered a low-grade inflammatory state. The inflammatory infiltration of macrophages, neutrophils, T cells, and other cells is common in diseased joints. These cells create the inflammatory environment of OA and are involved in the onset and progression of the disease. Exosomes, a type of complex vesicle containing abundant RNA molecules and proteins, play a crucial role in the physiological and pathological processes of an organism. In comparison to other therapeutic methods such as stem cells, exosomes have distinct advantages of precise targeting and low immunogenicity. Moreover, research and techniques related to exosomes are more mature, indicating a promising future in disease treatment. Many studies have shown that the impact of exosomes on the inflammatory microenvironment directly or indirectly leads to the occurrence of various diseases. Furthermore, exosomes can be helpful in the management of illnesses. This article provides a comprehensive review and update on the research of exosomes, a type of extracellular vesicle, in the treatment of OA by modulating the inflammatory microenvironment. It also combines innovative studies on the modification of exosomes. In general, the application of exosomes in the treatment of OA has been validated, and the introduction of modified exosome technology holds potential for enhancing its therapeutic efficacy.

2.
Front Immunol ; 14: 1154146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37398678

RESUMEN

Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.


Asunto(s)
Glioma , Péptido Hidrolasas , Humanos , Cisteína , Catepsinas/metabolismo , Glioma/terapia , Glioma/patología , Lisosomas/metabolismo
3.
BMC Med Genomics ; 13(1): 3, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906958

RESUMEN

BACKGROUND: MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS: The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS: The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS: The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteínas de Homeodominio , Neoplasias Pulmonares , MicroARNs , Proteínas de Neoplasias , ARN Neoplásico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Simulación por Computador , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
World J Surg Oncol ; 16(1): 76, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636077

RESUMEN

BACKGROUND: MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC. METHODS: The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC. RESULTS: The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network. CONCLUSIONS: MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/secundario , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , MicroARNs/genética , Carcinoma de Células Escamosas/genética , Estudios de Casos y Controles , Biología Computacional , Bases de Datos Factuales , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Neoplasias Pulmonares/genética , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Oncol Lett ; 15(4): 5056-5070, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29616090

RESUMEN

The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...