Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 42(1): 283, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880793

RESUMEN

BACKGROUND: Lung cancer is the most common and deadliest cancer worldwide, and approximately 90% of all lung cancer deaths are caused by tumor metastasis. Tumor-derived exosomes could potentially promote tumor metastasis through the delivery of metastasis-related molecules. However, the function and underlying mechanism of exosomal long noncoding RNA (lncRNA) in lung cancer metastasis remain largely unclear. METHODS: Cell exosomes were purified from conditioned media by differential ultracentrifugation and observed using transmission electron microscopy, and the size distributions were determined by nanoparticle tracking analysis. Exosomal lncRNA sequencing (lncRNA-seq) was used to identify long noncoding RNAs. Cell migration and invasion were determined by wound-healing assays, two-chamber transwell invasion assays and cell mobility tracking. Mice orthotopically and subcutaneously xenografted with human cancer cells were used to evaluate tumor metastasis in vivo. Western blot, qRT‒PCR, RNA-seq, and dual-luciferase reporter assays were performed to investigate the potential mechanism. The level of exosomal lncRNA in plasma was examined by qRT‒PCR. MS2-tagged RNA affinity purification (MS2-TRAP) assays were performed to verify lncRNA-bound miRNAs. RESULTS: Exosomes derived from highly metastatic lung cancer cells promoted the migration and invasion of lung cancer cells with low metastatic potential. Using lncRNA-seq, we found that a novel lncRNA, lnc-MLETA1, was upregulated in highly metastatic cells and their secreted exosomes. Overexpression of lnc-MLETA1 augmented cell migration and invasion of lung cancer. Conversely, knockdown of lnc-MLETA1 attenuated the motility and metastasis of lung cancer cells. Interestingly, exosome-transmitted lnc-MLETA1 promoted cell motility and metastasis of lung cancer. Reciprocally, targeting lnc-MLETA1 with an LNA suppressed exosome-induced lung cancer cell motility. Mechanistically, lnc-MLETA1 regulated the expression of EGFR and IGF1R by sponging miR-186-5p and miR-497-5p to facilitate cell motility. The clinical datasets revealed that lnc-MLETA1 is upregulated in tumor tissues and predicts survival in lung cancer patients. Importantly, the levels of exosomal lnc-MLETA1 in plasma were positively correlated with metastasis in lung cancer patients. CONCLUSIONS: This study identifies lnc-MLETA1 as a critical exosomal lncRNA that mediates crosstalk in lung cancer cells to promote cancer metastasis and may serve as a prognostic biomarker and potential therapeutic target for lung cancer diagnosis and treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Movimiento Celular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor IGF Tipo 1/genética
2.
Cancer Cell Int ; 23(1): 207, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726816

RESUMEN

BACKGROUND: Lung cancer has the highest mortality rate in the world, and mounting evidence suggests that cancer stem cells (CSCs) are associated with poor prognosis, recurrence, and metastasis of lung cancer. It is urgent to identify new biomarkers and therapeutic targets for targeting lung CSCs. METHODS: We computed the single-sample gene set enrichment analysis (ssGSEA) of 1554 Reactome gene sets to identify the mRNA expression-based stemness index (mRNAsi)-associated pathways using the genome-wide RNA sequencing data of 509 patients from The Cancer Genome Atlas (TCGA) cohort of lung adenocarcinoma (LUAD). Phenotypic effects of ubiquitin-specific peptidase 5 (USP5) on the CSC-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Cycloheximide chase assay, co-immunoprecipitation assay, and deubiquitination assay were performed to confirm the effect of USP5 on the deubiquitination of ß-catenin. RESULTS: We demonstrated that USP5 expression were positively correlated with the stemness-associated signatures and poor outcomes in lung cancer specimens. Silencing of endogenous USP5 reduced CSC-like characteristics, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. Furthermore, USP5 interacted with ß-catenin, which resulted in deubiquitination, stabilization of ß-catenin, and activation of Wnt/ß-catenin pathway. Accordingly, expression of USP5 was positively correlated with the enrichment score of the Wnt/TCF pathway signature in human lung cancer. Silencing of ß-catenin expression suppressed USP5-enhancing sphere formation. Targeting USP5 with the small molecule WP1130 promoted the degradation of ß-catenin, and showed great inhibitory effects on sphere formation, migration, and invasion. Finally, we identified a poor-prognosis subset of tumors characterized by high levels of USP5, Wnt signaling score, and Stemness score in both TCGA-LUAD and Rousseaux_2013 datasets. CONCLUSIONS: These findings reveal a clinical evidence for USP5-enhanced Wnt/ß-catenin signaling in promoting lung cancer stemness and metastasis, implying that targeting USP5 could provide beneficial effects to improve lung cancer therapeutics.

3.
Theranostics ; 12(3): 1173-1186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154481

RESUMEN

Background: The cytoskeletal linker protein α-Catulin has been shown to be important for tumor progression in various cancers. However, its role in the regulation of cancer stemness remains unclear. Methods: Phenotypic effects of α-Catulin on the cancer stem cell (CSC)-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Yeast two-hybrid assay, co-immunoprecipitation assay, and cycloheximide chase assay were performed to confirm the effect of α-Catulin on the WWP1-mediated degradation of KLF5. CPTAC and TCGA database were analyzed to determine the clinical association of α-Catulin, KLF5, and stemness-associated signatures in lung adenocarcinoma. Results: We report that α-Catulin increases cancer stem-like properties in non-small cell lung cancer (NSCLC). The expression of α-Catulin is elevated in tumor spheres compared to sphere-derived adherent cells and promotes the acquisition of cancer stemness characteristics in vitro and in vivo. Mechanistically, the interaction of α-Catulin and the C-terminal region of Kruppel-like transcription factor KLF5 results in the inhibition of WWP1-mediated degradation of KLF5. Accordingly, increased protein expression of KLF5 is observed in clinical specimens of lung adenocarcinoma with high expression of α-Catulin compared to specimens with low α-Catulin-expression. Knockdown of KLF5 abrogates α-Catulin-driven cancer stemness. α-Catulin is known to interact with integrin-linked kinase (ILK). Notably, an ILK inhibitor disrupts the α-Catulin-KLF5 interaction, promotes the degradation of KLF5, and decreases α-Catulin-driven cancer stemness. Importantly, we identify a CTNNAL1/ILK/KLF5 three-gene signature for predicting poor overall survival in patients with lung adenocarcinoma. Conclusions: These findings reveal a molecular basis of α-Catulin-enhanced KLF5 signaling and highlight a role for α-Catulin in promoting cancer stemness.


Asunto(s)
Adenocarcinoma del Pulmón , Factores de Transcripción de Tipo Kruppel , Neoplasias Pulmonares , Ubiquitina-Proteína Ligasas , alfa Catenina , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ubiquitina-Proteína Ligasas/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo
4.
Oncogene ; 39(4): 862-876, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570789

RESUMEN

Treatment of ovarian cancer (OvCa) remains challenging owing to its high recurrence rates. Detachment of cancer cells into the peritoneal fluid plays a key role in OvCa relapse, but how this occurs remains incompletely understood. Here we examined global miRNA expression profiles of paired primary/recurrent OvCa specimens and identified a novel biomarker, microRNA-150-5p (miR-150-5p), that was significantly upregulated in 16 recurrent OvCa tissues compared with their matched primary specimens. Analyses of cohorts from two other groups confirmed that expression of miR-150-5p was associated with early relapse and poor survival of OvCa patients. Inhibition of miR-150-5p significantly inhibited the migration and invasion of OvCa cells and induced a mesenchymal-epithelial transition (MET) phenotype. We demonstrated that the proto-oncogene, MYB, is an miR-150-5p target in OvCa cells and that the miR-150-5p/c-Myb/Slug axis plays important roles in regulating epithelial-mesenchymal transition (EMT) in OvCa cells. Expression of MYB was significantly correlated with good clinical outcome in OvCa and was negatively correlated with Slug expression in late-stage clinical specimens. These results suggest that miR-150-5p upregulation mediates the progression of recurrent OvCa by targeting the c-Myb/Slug pathway. Inhibition of miR-150-5p may serve as a new therapeutic strategy for preventing recurrence of OvCa.


Asunto(s)
Biomarcadores de Tumor/genética , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Bases de Datos Genéticas , Transición Epitelial-Mesenquimal , Femenino , Humanos , MicroARNs/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Pronóstico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myb/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba
5.
Risk Anal ; 36(10): 1855-1870, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26857871

RESUMEN

In statistical applications, logistic regression is a popular method for analyzing binary data accompanied by explanatory variables. But when one of the two outcomes is rare, the estimation of model parameters has been shown to be severely biased and hence estimating the probability of rare events occurring based on a logistic regression model would be inaccurate. In this article, we focus on estimating the probability of rare events occurring based on logistic regression models. Instead of selecting a best model, we propose a local model averaging procedure based on a data perturbation technique applied to different information criteria to obtain different probability estimates of rare events occurring. Then an approximately unbiased estimator of Kullback-Leibler loss is used to choose the best one among them. We design complete simulations to show the effectiveness of our approach. For illustration, a necrotizing enterocolitis (NEC) data set is analyzed.

6.
FASEB J ; 27(11): 4429-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23896728

RESUMEN

The piggyBac transposon is one of the most attractive nonviral tools for mammalian genome manipulations. Given that piggybac mobilizes in a "cut-and-paste" fashion, integrant remobilization could potentially damage the host genome. Here, we report a novel piggyBac transposon system with a series of recombinant transposases. We found that the transposition activity of wild-type (PBase) and hyperactive (hyPBase) piggyBac transposases can be significantly increased by peptide fusions in a cell-type dependent fashion, with the greatest change typically seen in mouse embryonic stem (ES) cells. The two most potent recombinant transposases, TPLGMH and ThyPLGMH, give a 9- and 7-fold increase, respectively, in the number of integrants in HEK293 compared with Myc-tagged PBase (MycPBase), and both display 4-fold increase in generating induced pluripotential stem cells. Interestingly, ThyPLGMH but not TPLGMH shows improved chromosomal excision activity (2.5-fold). This unique feature of TPLGMH provides the first evidence that integration activity of a transposase can be drastically improved without increasing its remobilization activity. Transposition catalyzed by ThyPLGMH is more random and occurs further from CpG islands than that catalyzed by MycPBase or TPLGMH. Our transposon system diversifies the mammalian genetic toolbox and provides a spectrum of piggyBac transposases that is better suited to different experimental purposes.


Asunto(s)
Elementos Transponibles de ADN/genética , Marcación de Gen/métodos , Genoma , Animales , Células CHO , Reprogramación Celular , Cromosomas/genética , Cricetinae , Cricetulus , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Ingeniería Genética/métodos , Células HEK293 , Humanos , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...