Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 117(1): 101, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008162

RESUMEN

Two novel Gram-stain-negative, aerobic, and non-motile strains, designated FZY0004T and YYF002T, were isolated from an agar-degrading co-culture, which was obtained from seawater of the intertidal zone of Yancheng City, the Yellow Sea of China. Strain FZY0004T optimally grew at 28 °C, pH 7.0, and 2-6% NaCl, while strain YYF002T optimally grew at 28 °C, pH 7.5, and 2-4% NaCl. Strain FZY0004T possessed Q-9 as the major respiratory quinone, and its major fatty acids (> 10%) were summed feature 8 (C18:1 ω7c), C16:0, and summed feature 3 (C16:1 ω7c/C16:1 ω6c). The polar lipids identified in strain FZY0004T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and several unidentified phospholipids (PL) and lipids (L). On the other hand, strain YYF002T had MK-6 as the predominant respiratory quinone and its major fatty acids consisted of iso-C15:0, iso-C15:1 G, and iso-C15:0 3-OH. The polar lipids identified in strain YYF002T were aminolipid (AL), PE, and several unidentified lipids. Strain FZY0004T shared 99.5% 16S rRNA gene sequence similarity and 90.1% average nucleotide identity (ANI) with T. povalilytica Zumi 95T, and strain YYF002T shared 99.2% 16S rRNA gene sequence similarity and 88.2% ANI with W. poriferorum JCM 12885T. The genomic DNA G + C contents of strains FZY0004T and YYF002T were 54.5% and 33.5%, respectively. The phylogenetic, phenotypic, and physiological characteristics permitted the distinction of the two strains from their neighbors, and we thus propose the names Thalassospira aquimaris sp. nov. (type strain FZY0004T = JCM 35895T = MCCC 1K08380T) and Winogradskyella marincola sp. nov. (type strain YYF002T = JCM 35950T = MCCC 1K08382T).


Asunto(s)
Agar , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Agua de Mar , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , ADN Bacteriano/genética , Agar/metabolismo , Ácidos Grasos/metabolismo , Composición de Base , Técnicas de Tipificación Bacteriana , China , Fosfolípidos/metabolismo , Técnicas de Cocultivo , Análisis de Secuencia de ADN
2.
Sci Bull (Beijing) ; 68(18): 2094-2105, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37573249

RESUMEN

Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.


Asunto(s)
COVID-19 , Humanos , ARN Mitocondrial/genética , ARN de Transferencia/genética , Isoformas de Proteínas , Metiltransferasas/genética
3.
J Biol Chem ; 299(5): 104704, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059185

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential components for mRNA translation. Two sets of aaRSs are required for cytoplasmic and mitochondrial translation in vertebrates. Interestingly, TARSL2 is a recently evolved duplicated gene of TARS1 (encoding cytoplasmic threonyl-tRNA synthetase) and represents the only duplicated aaRS gene in vertebrates. Although TARSL2 retains the canonical aminoacylation and editing activities in vitro, whether it is a true tRNA synthetase for mRNA translation in vivo is unclear. In this study, we showed that Tars1 is an essential gene since homozygous Tars1 KO mice were lethal. In contrast, when Tarsl2 was deleted in mice and zebrafish, neither the abundance nor the charging levels of tRNAThrs were changed, indicating that cells relied on Tars1 but not on Tarsl2 for mRNA translation. Furthermore, Tarsl2 deletion did not influence the integrity of the multiple tRNA synthetase complex, suggesting that Tarsl2 is a peripheral member of the multiple tRNA synthetase complex. Finally, we observed that Tarsl2-deleted mice exhibited severe developmental retardation, elevated metabolic capacity, and abnormal bone and muscle development after 3 weeks. Collectively, these data suggest that, despite its intrinsic activity, loss of Tarsl2 has little influence on protein synthesis but does affect mouse development.


Asunto(s)
Aminoacil-ARNt Sintetasas , Biosíntesis de Proteínas , Treonina-ARNt Ligasa , Animales , Ratones , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Treonina-ARNt Ligasa/genética , Treonina-ARNt Ligasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Nucleic Acids Res ; 50(7): 4012-4028, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35357504

RESUMEN

METTL8 has recently been identified as the methyltransferase catalyzing 3-methylcytidine biogenesis at position 32 (m3C32) of mitochondrial tRNAs. METTL8 also potentially participates in mRNA methylation and R-loop biogenesis. How METTL8 plays multiple roles in distinct cell compartments and catalyzes mitochondrial tRNA m3C formation remain unclear. Here, we discovered that alternative mRNA splicing generated several isoforms of METTL8. One isoform (METTL8-Iso1) was targeted to mitochondria via an N-terminal pre-sequence, while another one (METTL8-Iso4) mainly localized to the nucleolus. METTL8-Iso1-mediated m3C32 modification of human mitochondrial tRNAThr (hmtRNAThr) was not reliant on t6A modification at A37 (t6A37), while that of hmtRNASer(UCN) critically depended on i6A modification at A37 (i6A37). We clarified the hmtRNAThr substrate recognition mechanism, which was obviously different from that of hmtRNASer(UCN), in terms of requiring a G35 determinant. Moreover, SARS2 (mitochondrial seryl-tRNA synthetase) interacted with METTL8-Iso1 in an RNA-independent manner and modestly accelerated m3C modification activity. We further elucidated how nonsubstrate tRNAs in human mitochondria were efficiently discriminated by METTL8-Iso1. In summary, our results established the expression pattern of METTL8, clarified the molecular basis for m3C32 modification by METTL8-Iso1 and provided the rationale for the involvement of METTL8 in tRNA modification, mRNA methylation or R-loop biogenesis.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/metabolismo , ARN de Transferencia , Empalme Alternativo , Humanos , Metiltransferasas/genética , Mitocondrias/genética , ARN Mensajero , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Treonina/genética
5.
Nucleic Acids Res ; 49(14): 8309-8323, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34268557

RESUMEN

tRNAs harbor the most diverse posttranscriptional modifications. The 3-methylcytidine (m3C) is widely distributed at position C32 (m3C32) of eukaryotic tRNAThr and tRNASer species. m3C32 is decorated by the single methyltransferase Trm140 in budding yeasts; however, two (Trm140 and Trm141 in fission yeasts) or three enzymes (METTL2A, METTL2B and METTL6 in mammals) are involved in its biogenesis. The rationale for the existence of multiple m3C32 methyltransferases and their substrate discrimination mechanism is hitherto unknown. Here, we revealed that both METTL2A and METTL2B are expressed in vivo. We purified human METTL2A, METTL2B, and METTL6 to high homogeneity. We successfully reconstituted m3C32 modification activity for tRNAThr by METT2A and for tRNASer(GCU) by METTL6, assisted by seryl-tRNA synthetase (SerRS) in vitro. Compared with METTL2A, METTL2B exhibited dramatically lower activity in vitro. Both G35 and t6A at position 37 (t6A37) are necessary but insufficient prerequisites for tRNAThr m3C32 formation, while the anticodon loop and the long variable arm, but not t6A37, are key determinants for tRNASer(GCU) m3C32 biogenesis, likely being recognized synergistically by METTL6 and SerRS, respectively. Finally, we proposed a mutually exclusive substrate selection model to ensure correct discrimination among multiple tRNAs by multiple m3C32 methyltransferases.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , Anticodón/genética , Citidina/análogos & derivados , Citidina/genética , Humanos , ARN/genética , ARN de Transferencia/ultraestructura , Serina-ARNt Ligasa/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...