Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 74(11): 1796-1807, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35637551

RESUMEN

OBJECTIVE: T cells are critical in the pathogenesis of systemic lupus erythematosus (SLE) in that they secrete inflammatory cytokines, help autoantibody production, and form autoreactive memory T cells. Although the contribution of T cells to several forms of organ-mediated damage in SLE has been previously demonstrated, the role of T cells in neuropsychiatric SLE (NPSLE), which involves diffuse central nervous system manifestations and is observed in 20-40% of SLE patients, is not known. Therefore, we conducted this study to evaluate how behavioral deficits are altered after depletion or transfer of T cells, to directly assess the role of T cells in NPSLE. METHODS: MRL/lpr mice, an NPSLE mouse model, were either systemically depleted of CD4+ T cells or intracerebroventricularly injected with choroid plexus (CP)-infiltrating T cells and subsequently evaluated for alterations in neuropsychiatric manifestations. Our study end points included evaluation of systemic disease and assessment of central nervous system changes. RESULTS: Systemic depletion of CD4+ T cells ameliorated systemic disease and cognitive deficits. Intracerebroventricular injection of CP-infiltrating T cells exacerbated depressive-like behavior and worsened cognition in recipient mice compared with mice who received injection of splenic lupus T cells or phosphate buffered saline. Moreover, we observed enhanced activation in CP-infiltrating T cells when cocultured with brain lysate-pulsed dendritic cells in comparison to the activation levels observed in cocultures with splenic T cells. CONCLUSION: T cells, and more specifically CP-infiltrating antigen-specific T cells, contributed to the pathogenesis of NPSLE in mice, indicating that, in the development of more targeted treatments for NPSLE, modulation of T cells may represent a potential therapeutic strategy.


Asunto(s)
Lupus Eritematoso Sistémico , Vasculitis por Lupus del Sistema Nervioso Central , Animales , Ratones , Ratones Endogámicos MRL lpr , Plexo Coroideo/patología , Modelos Animales de Enfermedad
2.
Front Immunol ; 12: 763065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868008

RESUMEN

Neuropsychiatric lupus (NPSLE), the nervous system presentation of systemic lupus erythematosus (SLE), remains challenging to treat due to its unclear pathogenesis and lack of available targeted therapies. A potential contributor to disease progression is brain tertiary lymphoid structures (TLS); these ectopic lymphoid follicles that can develop tissue-targeted antibodies have recently been described in the MRL/lpr lupus mouse strain, a classic model for studying NPSLE. The brains of MRL/lpr mice show a significant increase of CXCL13, an important chemokine in lymphoid follicle formation and retention that may also play a role in the disease progression of NPSLE. The aim of the present study was to inhibit CXCL13 and examine the effect of this intervention on lymphoid formation and the development of neurobehavioral manifestations in lupus mice. Female MRL/lpr mice were injected with an anti-CXCL13 antibody, an IgG1 isotype-matched antibody, or PBS either three times a week for 12 weeks intraperitoneally (IP) starting at 6-8 weeks of age, or continuously intracerebroventricularly (ICV) with an osmotic pump over a two-week period starting at 15 weeks of age. Cognitive dysfunction and depression-like behavior were assessed at the end of treatment. When treatment was delivered IP, anti-CXCL13 treated mice showed significant improvement in cognitive function when compared to control treated mice. Depression-like behavior was attenuated as well. Furthermore, mice that received anti-CXCL13 by the ICV route showed similar beneficial effects. However, the extent of lymphocyte infiltration into the brain and the general composition of the aggregates were not substantively changed by anti-CXCL13 irrespective of the mode of administration. Nevertheless, analysis of brain gene expression in anti-CXCL13 treated mice showed significant differences in key immunological and neuro-inflammatory pathways that most likely explained the improvement in the behavioral phenotype. Our results indicate that CXCL13 affects the behavioral manifestations in the MRL/lpr strain and is important to the pathogenesis of murine NPSLE, suggesting it as a potential therapeutic target.


Asunto(s)
Quimiocina CXCL13/antagonistas & inhibidores , Vasculitis por Lupus del Sistema Nervioso Central/tratamiento farmacológico , Animales , Encéfalo/patología , Quimiocina CXCL13/fisiología , Cognición/efectos de los fármacos , Femenino , Inyecciones Intraventriculares , Vasculitis por Lupus del Sistema Nervioso Central/patología , Vasculitis por Lupus del Sistema Nervioso Central/psicología , Ratones , Ratones Endogámicos MRL lpr , Factor de Transcripción STAT3/fisiología
3.
Front Immunol ; 11: 1476, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765512

RESUMEN

Objective: In systemic lupus erythematosus (SLE), widespread T cell infiltration into target organs contributes to inflammation and organ damage. Autoreactive T cells become aberrantly activated in this disease due to dysfunctional T cell receptor signaling that lowers the activation threshold. Characterizing the T cell repertoire can provide further insight into the specific homing and proliferation of these T cells into lupus target organs. In the spontaneous lupus model, MRL/lpr, the TCR repertoire has not been fully elucidated, especially for T cells infiltrating the brain. Our aim was to investigate and compare the TCR repertoire between MRL/lpr mice and its congenic controls, MRL/MpJ, and within MRL/lpr tissues. Methods: Spleen, salivary gland, and brain choroid plexus were isolated from female MRL/lpr mice and MRL/MpJ mice. The TCRß CDR3 region was analyzed by multiplex PCRs and sequencing. Results: Significant differences were seen not only between the MRL/lpr and MRL/MpJ spleens, but also between MRL/lpr tissues. The TCR repertoire in MRL/lpr choroid plexus tissues had significantly increased clonality and sequence homology compared to MRL/lpr spleen and salivary gland. The consensus sequence, CASSQDWGGYEQYFF, was identified in the MRL/lpr choroid plexus repertoire. Conclusions: The TCR repertoire in lupus prone mice is not uniform between target organs, and suggests that T cells are specifically recruited into the choroid plexus of MRL/lpr mice. Further studies are needed to determine the antigen specificities for these infiltrating T cells in target organs of lupus mice, and their possible contribution to the pathogenesis of neuropsychiatric disease and other lupus manifestations.


Asunto(s)
Encéfalo/inmunología , Plexo Coroideo/inmunología , Vasculitis por Lupus del Sistema Nervioso Central/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Vasculitis por Lupus del Sistema Nervioso Central/genética , Ratones , Ratones Endogámicos MRL lpr , Transducción de Señal
4.
Curr Opin Rheumatol ; 32(2): 152-158, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31895125

RESUMEN

PURPOSE OF REVIEW: Diagnosing and treating neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging as the pathogenesis is still being debated. In this review, we discuss studies evaluating recent advances in diagnostic methods, pathogenic mediators and potential treatments. RECENT FINDINGS: Screening tools used for neurodegenerative diseases were found to be both sensitive and moderately specific for cognitive dysfunction in NPSLE. Neuroimaging can be used to distinguish systemic lupus erythematosus (SLE) patients from healthy controls, but further refinement is needed to differentiate between lupus patients with and without neuropsychiatric manifestations. Elevated levels of specific molecules in the cerebrospinal fluid and/or serum, as well as the presence of certain autoantibodies, have been identified as potential biomarkers in attempts to facilitate a more accurate and objective diagnosis. Among such autoantibodies, anti-NR2 and anti-ribosomal P autoantibodies also have a pathogenic role, although newer studies demonstrate that blood-brain barrier damage may not always be required as previously believed. These and other observations, together with new evidence for disease attenuation after microglial modulation, suggest direct involvement of the central nervous system in NPSLE pathogenesis. SUMMARY: Neuropsychiatric involvement of SLE includes a variety of symptoms that impact quality of life and patient prognosis. There have been recent advances in improving the diagnosis of NPSLE as well as in dissecting the underlying pathogenesis. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for targeted therapies, which are based on a clearer understanding of the pathogenesis of NPSLE. Further assessment of these treatments is required in NPSLE patients, as well as the potential use of neuroimaging to distinguish between SLE patients with or without neuropsychiatric manifestations.


Asunto(s)
Vasculitis por Lupus del Sistema Nervioso Central/diagnóstico , Adulto , Animales , Autoanticuerpos/inmunología , Biomarcadores , Femenino , Humanos , Vasculitis por Lupus del Sistema Nervioso Central/tratamiento farmacológico , Vasculitis por Lupus del Sistema Nervioso Central/inmunología , Masculino , Ratones , Pronóstico , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA