Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.340
Filtrar
1.
Neuron ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38754414

RESUMEN

The patterns of synaptic connectivity and physiological properties of diverse neuron types are shaped by distinct gene sets. Our study demonstrates that, in the mouse forebrain, the transcriptional profiles of inhibitory GABAergic interneurons are regulated by Nr4a1, an orphan nuclear receptor whose expression is transiently induced by sensory experiences and is required for normal learning. Nr4a1 exerts contrasting effects on the local axonal wiring of parvalbumin- and somatostatin-positive interneurons, which innervate different subcellular domains of their postsynaptic partners. The loss of Nr4a1 activity in these interneurons results in bidirectional, cell-type-specific transcriptional switches across multiple gene families, including those involved in surface adhesion and repulsion. Our findings reveal that combinatorial synaptic organizing codes are surprisingly flexible and highlight a mechanism by which inducible transcription factors can influence neural circuit structure and function.

3.
J Pharmacol Exp Ther ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719477

RESUMEN

Constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) are members of the nuclear receptor superfamily, which regulates various physiological and pathological processes. Phase separation is a dynamic biophysical process that biomacromolecules form liquid-like condensates, which have been identified as a contributor to many cellular functions, such as signal transduction and transcription regulation. However, the possibility of phase separation for CAR and PPARα remains unknown. This study explored the potential phase separation of CAR and PPARα. The computational analysis utilizing algorithms tools examining the intrinsically disordered regions (IDRs) of CAR and PPARα suggested a limited likelihood of undergoing phase separation. Experimental assays under varying conditions of hyperosmotic stress and agonist treatments confirmed the absence of phase separation for these receptors. Additionally, the optoDroplets assay, which utilizes blue light stimulation to induce condensate formation, showed that there was no condensate formation of the fusion protein of Cry2 with CAR or PPARα. Furthermore, phase separation of CAR or PPARα did not occur despite reduced target expression under hyperosmotic stress. In conclusion, these findings revealed that neither the activation of CAR and PPARα nor hyperosmotic stress induces phase separation of CAR and PPARα in cells. Significance Statement CAR and PPARα are key regulators of various functions in the body. This study showed that CAR and PPARα do not exhibit phase separation under hyperosmotic stress or after agonist-induced activation. These findings provide new insights into the CAR and PPARα biology and physiology.

4.
Heliyon ; 10(10): e30909, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778961

RESUMEN

Background: Observational studies have found a potential link between the use of thiazolidinediones (TZDs) and a lower risk of Alzheimer's disease (AD) development. Platelets were the great source of amyloid-ß (Aß) and involved in the development of AD. This study aimed to assess the correlation between antidiabetic agents and platelet characteristics, hoping to provide a potential mechanism of TZDs neuroprotection in AD. Method: Drug-targeted Mendelian randomization (MR) was performed to systematically illustrate the long-term effects of antidiabetic agents on platelet characteristics. Four antidiabetic agent targets were considered. Positive control analysis for type 2 diabetes (T2D) was conducted to validate the selection of instrumental variables (IVs). Colocalization analysis was used to further strengthen the robustness of the results. Result: Positive control analysis showed an association of four antidiabetic agents with lower risk of T2D, which was consistent with their mechanisms of action and previous evidence from clinical trials. Genetically proxied TZDs were associated with lower platelet count (ß[IRNT] = -0.410 [95 % CI -0.533 to -0.288], P = 5.32E-11) and a lower plateletcrit (ß[IRNT] = -0.344 [95 % CI -0.481 to -0.206], P = 1.04E-6). Colocalization suggested the posterior probability of hypothesis 4 (PPH4) > 0.8, which further strengthened the MR results. Conclusion: Genetically proxied TZDs were causally associated with lower platelet characteristics, particularly platelet count and plateletcrit, providing insight into the involvement of platelet-related pathways in the neuroprotection of TZDs against AD. Future studies are warranted to reveal the underlying molecular mechanism of TZDs' neuroprotective effects through platelet pathways.

5.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732412

RESUMEN

Thinopyrum intermedium (2n = 6x = 42, EeEeEbEbStSt or JJJsJsStSt) contains a large number of genes that are highly adaptable to the environment and immune to a variety of wheat diseases, such as powdery mildew, rust, and yellow dwarf, making it an important gene source for the genetic improvement of common wheat. Currently, an important issue plaguing wheat production and breeding is the spread of pests and illnesses. Breeding disease-resistant wheat varieties using disease-resistant genes is currently the most effective measure to solve this problem. Moreover, alien resistance genes often have a stronger disease-resistant effect than the resistance genes found in common wheat. In this study, the wheat-Th. intermedium partial amphiploid line 92048 was developed through hybridization between Th. intermedium and common wheat. The chromosome structure and composition of 92048 were analyzed using ND-FISH and molecular marker analysis. The results showed that the chromosome composition of 92048 (Octoploid Trititrigia) was 56 = 42W + 6J + 4Js + 4St. In addition, we found that 92048 was highly resistant to a mixture of stripe rust races (CYR32, CYR33, and CYR34) during the seedling stage and fusarium head blight (FHB) in the field during the adult plant stage, suggesting that the alien or wheat chromosomes in 92048 had disease-resistant gene(s) to stripe rust and FHB. There is a high probability that the gene(s) for resistance to stripe rust and FHB are from the alien chromosomes. Therefore, 92048 shows promise as a bridge material for transferring superior genes from Th. intermedium to common wheat and improving disease resistance in common wheat.

6.
Biomed Pharmacother ; 175: 116746, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38739991

RESUMEN

Brain apoptosis is one of the main causes of epileptogenesis. The antiapoptotic effect and potential mechanism of Q808, an innovative anticonvulsant chemical, have never been reported. In this study, the seizure stage and latency to reach stage 2 of pentylenetetrazol (PTZ) seizure rat model treated with Q808 were investigated. The morphological change and neuronal apoptosis in the hippocampus were detected by hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, respectively. The hippocampal transcriptomic changes were observed using RNA sequencing (RNA-seq). The expression levels of hub genes were verified by quantitative reverse-transcription PCR (qRT-PCR). Results revealed that Q808 could allay the seizure score and prolong the stage 2 latency in seizure rats. The morphological changes of neurons and the number of apoptotic cells in the DG area were diminished by Q808 treatment. RNA-seq analysis revealed eight hub genes, including Map2k3, Nfs1, Chchd4, Hdac6, Siglec5, Slc35d3, Entpd1, and LOC103690108, and nine hub pathways among the control, PTZ, and Q808 groups. Hub gene Nfs1 was involved in the hub pathway sulfur relay system, and Map2k3 was involved in the eight remaining hub pathways, including Amyotrophic lateral sclerosis, Cellular senescence, Fc epsilon RI signaling pathway, GnRH signaling pathway, Influenza A, Rap1 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. qRT-PCR confirmed that the mRNA levels of these hub genes were consistent with the RNA-seq results. Our findings might contribute to further studies exploring the new apoptosis mechanism and actions of Q808.

7.
Int Immunopharmacol ; 135: 112221, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762924

RESUMEN

The development of acute lung injury (ALI), a common respiratory condition with multiple causes, is significantly influenced by the pro-inflammatory environment of signal transducer and activator of transcription 3 (STAT3) in macrophages. Our study aimed to evaluate the anti-inflammatory effects of B9 (N-(4-hydroxyphenyl)-9, 10-dioxo-9, 10-dihydroanthracene-2-sulfonamide), a novel inhibitor targeting the STAT3 SH2 domain, in macrophages and to assess its therapeutic potential for ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI. We found that B9 (30 mg/kg) significantly reduced lung pathological damage and neutrophil infiltration caused by the intratracheal administration of LPS. Additionally, the high expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in alveolar lavage fluid was also inhibited by B9 treatment. The decreased expression of CD86 and increased CD206 in lung tissue demonstrated the anti-inflammatory effect of B9, which was due to its inhibition of the STAT3 signaling pathway in macrophages of ALI mice. Furthermore, B9 suppressed the activation of RAW264.7 cells induced by LPS, characterized by its ability to inhibit the activation of iNOS and STAT3 in a dose-dependent manner, as well as reduce the secretion of IL-6 and IL-1ß. The in vivo preliminary safety evaluation indicated that B9 had a favorable safety profile at the administered doses. These results suggest that B9 exerts a therapeutic effect on LPS-induced ALI, potentially by preventing the phosphorylation of STAT3 Y705 and S727 without affecting the STAT3 protein level. Taken together, these findings provide a foundation for developing B9 as a novel anti-inflammatory agent for ameliorating LPS-induced ALI.

8.
Toxicol Lett ; 397: 79-88, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734220

RESUMEN

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.

9.
Cancer Res ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748783

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Transcriptional dysregulation is a hallmark of cancer, and several transcriptional regulators have been demonstrated to contribute to cancer progression. Here, we identified upregulation of the transcriptional corepressor DRAP1 in TNBC, which was closely associated with poor recurrence-free survival in TNBC patients. DRAP1 promoted TNBC proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, the DR1/DRAP1 heterodimer complex inhibited expression of the arginine sensor CASTOR1 and thereby increased activation of mTOR, which sensitized TNBC to treatment with the mTOR inhibitor everolimus. DRAP1 and DR1 also formed a positive feedback loop. DRAP1 enhanced the stability of DR1, recruiting the deubiquitinase USP7 to inhibit its proteasomal degradation; in turn, DR1 directly promoted DRAP1 transcription. Collectively, this study uncovered a DRAP1-DR1 bidirectional regulatory pathway that promotes TNBC progression, suggesting that targeting the DRAP1/DR1 complex might be a potential therapeutic strategy to treat TNBC.

10.
J Hazard Mater ; 473: 134607, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38761765

RESUMEN

Paraquat (PQ) exposure is strongly associated with neurotoxicity. However, research on the neurotoxicity mechanisms of PQ varies in terms of endpoints of toxic assessment, resulting in a great challenge to understand the early neurotoxic effects of PQ. In this study, we developed an adverse outcome pathway (AOP) to investigate PQ-induced neuro-immunotoxicity from an immunological perspective, combining of traditional toxicology methods and computer simulations. In vivo, PQ can microstructurally lead to an early synaptic loss in the brain mice, which is a large degree regarded as a main reason for cognitive impairment to mice behavior. Both in vitro and in vivo demonstrated synapse loss is caused by excessive activation of the complement C1q/C3-CD11b pathway, which mediates microglial phagocytosis dysfunction. Additionally, the interaction between PQ and C1q was validated by molecular simulation docking. Our findings extend the AOP framework related to PQ neurotoxicity from a neuro-immunotoxic perspective, highlighting C1q activation as the initiating event for PQ-induced neuro-immunotoxicity. In addition, downstream complement cascades induce abnormal microglial phagocytosis, resulting in reduced synaptic density and subsequent non-motor dysfunction. These findings deepen our understanding of neurotoxicity and provide a theoretical basis for ecological risk assessment of PQ.

11.
Eur J Med Chem ; 272: 116499, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38759457

RESUMEN

The Mnk-eIF4E axis plays a crucial role in tumor development, and inhibiting Mnk kinases is a promising approach for cancer therapy. Starting with fragment WS23, a series of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives were designed and synthesized. Among these derivatives, compound 15b showed the highest potency with IC50 values of 0.8 and 1.5 nM against Mnk1 and Mnk2, respectively. Additionally, it demonstrated good selectivity among 30 selected kinases. 15b significantly suppressed MOLM-13 and K562 cell lines growth and caused cell cycle arrest. Furthermore, the Western blot assay revealed that 15b effectively downregulated the downstream proteins p-eIF4E, Mcl-1, and c-myc. Additionally, 15b exhibited remarkable stability in rat plasma and rat and human microsomes. In vivo anti-tumor activity study suggested that treatment with 15b suppressed tumor growth in LL/2 syngeneic models. These findings highlight the potential of 15b as a novel and potent Mnks inhibitor, which deserves further investigation.

12.
Ecotoxicol Environ Saf ; 279: 116451, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759535

RESUMEN

Bile acid homeostasis is critical to human health. Low-level exposure to antibiotics has been suggested to potentially disrupt bile acid homeostasis by affecting gut microbiota, but relevant data are still lacking in humans, especially for the level below human safety threshold. We conducted a cross-sectional study in 4247 Chinese adults by measuring 34 parent antibiotics and their metabolites from six common categories (i.e., tetracyclines, qinolones, macrolides, sulfonamides, phenicols, and lincosamides) and ten representative bile acids in fasting morning urine using liquid chromatography coupled to mass spectrometry. Daily exposure dose of antibiotics was estimated from urinary concentrations of parent antibiotics and their metabolites. Urinary bile acids and their ratios were used to reflect bile acid homeostasis. The estimated daily exposure doses (EDED) of five antibiotic categories with a high detection frequency (i.e., tetracyclines, qinolones, macrolides, sulfonamides, and phenicols) were significantly associated with urinary concentrations of bile acids and decreased bile acid ratios in all adults and the subset of 3898 adults with a cumulative ratio of antibiotic EDED to human safety threshold of less than one. Compared to a negative detection of antibiotics, the lowest EDED quartiles of five antibiotic categories and four individual antibiotics with a high detection frequency (i.e., ciprofloxacin, ofloxacin, trimethoprim, and florfenicol) in the adults with a positive detection of antibiotics had a decrease of bile acid ratio between 6.6% and 76.6%. Except for macrolides (1.2×102 ng/kg/day), the medians of the lowest EDED quartile of antibiotic categories and individual antibiotics ranged from 0.32 ng/kg/day to 10 ng/kg/day, which were well below human safety thresholds. These results suggested that low-level antibiotic exposure could disrupt bile acid homeostasis in adults and existing human safety thresholds may be inadequate in safeguarding against the potential adverse health effects of low-level exposure to antibiotics.

13.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743760

RESUMEN

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.

14.
Plant Commun ; : 100937, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693694

RESUMEN

The crosstalk between clathrin-mediated endocytosis (CME) and autophagy pathway has been reported in mammals. However, the interconnection of CME with autophagy has not been established in plants. In this report, we showed that Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopied the Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants both in auto-immunity and nutrient sensitivity. Accordingly, the autophagy pathway was significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, we demonstrated with multiple assays that CLC2 directly interacted with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP were subjected to autophagic degradation and the degradation of GFP-ATG8h was significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneously knocking out ATG8h and ATG8i by the CRISPR/CAS9 resulted in an enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results uncovered a link between the function of CLCs and the autophagy pathway in Arabidopsis.

15.
Int J Cardiol Heart Vasc ; 52: 101414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694269

RESUMEN

Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.

16.
Biochem Pharmacol ; 224: 116207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621425

RESUMEN

Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.


Asunto(s)
Abietanos , Acrilamidas , Resistencia a Antineoplásicos , Lipogénesis , Neoplasias Pulmonares , Ratones Desnudos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Abietanos/farmacología , Animales , Acrilamidas/farmacología , Lipogénesis/efectos de los fármacos , Ratones , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Masculino , Femenino , Indoles , Pirimidinas
17.
Mol Neurobiol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561559

RESUMEN

Spinal cord injury (SCI) is a significant health concern, as it presently has no effective treatment in the clinical setting. Inflammation is a key player in the pathophysiological process of SCI, with a number of studies evidencing that the inhibition of the NF-κB signaling pathway may impede the inflammatory response and improve SCI. OTULIN, as a de-ubiquitination enzyme, the most notable is its anti-inflammatory effect. OTULIN can inhibit the NF-κB signaling pathway to suppress the inflammatory reaction via de-ubiquitination. In addition, OTULIN may promote vascular regeneration through the Wnt/ß-catenin pathway in the wake of SCI. In this review, we analyze the structure and physiological function of OTULIN, along with both NF-κB and Wnt/ß-catenin signaling pathways. Furthermore, we examine the significant role of OTULIN in SCI through its impairment of the NF-κB signaling pathway, which could open the possibility of it being a novel interventional target for the condition.

18.
J Stomatol Oral Maxillofac Surg ; : 101861, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38561137

RESUMEN

OBJECTIVE: This study aimed to assess the functional and esthetic outcomes of a chimeric innervated buccinator myomucosal-submental island flap (BMM-SIF) for large composite lower lip reconstruction. METHODS: This retrospective study included five patients who underwent lower lip tumor resection and BMM-SIF reconstruction at the Hospital of Stomatology, Sun Yat-sen University, between August 2021 and February 2023. Lip function was evaluated using water leakage, cheek puffing tests, and superficial electromyography. Lip appearance was observed using photographs and evaluated through subjective interviews. Donor-site conditions, including facial symmetry and mouth opening, were monitored. RESULTS: All the BMM-SIFs survived. Drooling was the main complication observed shortly after surgery. The water leakage test showed complete oral competence for liquid holding in the 7th month; however, moderate air leakage was present in two patients. Electromyography revealed myoelectric signals from the innervated buccinator at the recipient site. Facial expression and food intake were typically managed. The shape and projection of the vermilion were harmonious and satisfactory for each patient. Neither microstomia nor mouth opening limitation was observed, with an average inter-incisor distance of 37.25±4.4 mm. CONCLUSION: Chimeric motor-innervated BMM-SIF effectively reconstructed large full-thickness lower-lip defects with satisfactory functional and esthetic outcomes.

19.
Heliyon ; 10(7): e27561, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38560233

RESUMEN

Background: This study aimed to assess the diagnostic value of Krebs von den Lungen-6 (KL-6), Surfactant protein-A (SP-A), SP-D and molecular matrixmetalloproteinase-7 (MMP-7) in discriminating patients with interstitial lung diseases (ILDs) from disease control subjects. Methods: Serum levels of KL-6, SP-A, SP-D and MMP-7 were measured in both the ILD and non-ILD (NILD) groups. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these markers and laboratory indices. High-resolution computed tomography (HRCT) fibrosis scores were determined, and their correlation with the serum markers was analyzed. Results: Serum levels of KL-6 and MMP-7 were significantly elevated in the ILD group compared to the control group, while no significant differences were observed for SP-A and SP-D. ROC analysis of KL-6 demonstrated superior diagnostic accuracy, with a sensitivity of 76.36%, specificity of 91.07%, and an area under curve (AUC) of 0.902 (95%CI 0.866-0.945). These findings were consistent across an additional cohort. Correlation analysis revealed a link between KL-6 levels at initial diagnosis and HRCT fibrosis scores, indicating disease severity. Moreover, a negative correlation was found between KL-6 and pulmonary function indices, reflecting disease progression. Patients with increased 12-month HRCT fibrosis score showed higher lactate dehydrogenase (LDH) levels, with LDH exhibiting an AUC of 0.767 (95% CI: 0.520-0.927) as a predictor of progression. Conclusions: Serum KL-6 detection proves to be a valuable tool for accurately distinguishing ILDs from control subjects. While KL-6 shows a correlation with HRCT fibrosis scores and a negative association with pulmonary function indices, its predictive value for ILDs prognosis is limited. Trial registration: This study received retrospective approval from the Ethical Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (institutional review board ID: TJ-IRB20210331, date: 2021.03.30).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA