Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Med Chem ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38860909

RESUMEN

As members of the protein tyrosine kinase family, the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) play essential roles in cellular signal transduction pathways. Overexpression or abnormal activation of EGFR and HER2 can lead to the development of various solid tumors. Therefore, they have been confirmed as biological targets for the development of anticancer drugs. Due to the fact that many cancers are highly susceptible to developing resistance to single-target EGFR inhibitors in clinical practice, dual inhibitors that target both EGFR and HER2 have been developed to increase efficacy, reduce drug resistance and interactions, and improve patient compliance. Currently, a variety of EGFR/HER2 dual inhibitors have been developed, with several drugs already approved for marketing or in clinical trials. In this review, we summarize recent advancements in small-molecule EGFR/HER2 dual inhibitors by focusing on structure-activity relationships and share novel insights into developing anticancer agents.

2.
ACS Chem Neurosci ; 15(2): 382-393, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38155530

RESUMEN

Major facilitator superfamily domain-containing 2a (Mfsd2a) is a sodium-dependent lysophosphatidylcholine cotransporter that plays an important role in maintaining the integrity of the blood-brain barrier and neurological function. Abnormal degradation of Mfsd2a often leads to dysfunction of the blood-brain barrier, while upregulation of Mfsd2a can retrieve neurological damage. It has been reported that Mfsd2a can be specifically recognized and ubiquitinated by neural precursor cell-expressed developmentally downregulated gene 4 type 2 (NEDD4-2) ubiquitin ligase and finally degraded through the proteasome pathway. However, the structural basis for the specific binding of Mfsd2a to NEDD4-2 is unclear. In this work, we combined deep learning and molecular dynamics simulations to obtain a Mfsd2a structure with high quality and a stable Mfsd2a/NEDD4-2-WW3 interaction model. Moreover, molecular mechanics generalized Born surface area (MM-GBSA) methods coupled with per-residue energy decomposition studies were carried out to analyze the key residues that dominate the binding interaction. Based on these results, we designed three peptides containing the key residues by truncating the Mfsd2a sequences. One of them was found to significantly inhibit Mfsd2a ubiquitination, which was further validated in an oxygen-glucose deprivation (OGD) model in a human microvascular endothelial cell line. This work provides some new insights into the understanding of Mfsd2a and NEDD4-2 interaction and might promote further development of drugs targeting Mfsd2a ubiquitination.


Asunto(s)
Barrera Hematoencefálica , Simulación de Dinámica Molecular , Humanos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Línea Celular , Ubiquitinación
3.
J Am Chem Soc ; 145(20): 10917-10929, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37178135

RESUMEN

Deracemization, which converts a racemate into its single enantiomer without separation of the intermediate, has gained renewed interest in asymmetric synthesis with its inherent atomic economy and high efficiency. However, this ideal process requires selective energy input and delicate reaction design to surmount the thermodynamical and kinetical constraints. With the rapid development of asymmetric catalysis, many catalytic strategies in concert with exogenous energy input have been exploited to facilitate this nonspontaneous enantioenrichment. In this perspective, we will discuss the basic ideas to accomplish catalytic deracemization, categorized by the three major exogenous energy sources including chemical (redox)-, photo- and mechanical energy from attrition. Emphasis will be given to the catalytic features and the underlying deracemization mechanism together with perspectives on future development.

4.
Eur J Med Chem ; 250: 115196, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787657

RESUMEN

Reverse transcriptase (RT) plays an indispensable role in the replication of human immunodeficiency virus (HIV) through its associated polymerase and ribonuclease H (RNase H) activities during the viral RNA genome transformation into proviral DNA. Due to the fact that HIV is a highly mutagenic virus and easily resistant to single-target RT inhibitors, dual inhibitors targeting HIV RT associated polymerase and RNase H have been developed. These dual inhibitors have the advantages of increasing efficacy, reducing drug resistance, drug-drug interactions, and cytotoxicity, as well as improving patient compliance. In this review, we summarize recent advances in polymerase/RNase H dual inhibitors focusing on drug design strategies, and structure-activity relationships and share new insights into developing anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH , Transcriptasa Inversa del VIH , Humanos , Ribonucleasa H , Inhibidores de la Transcriptasa Inversa/farmacología , Relación Estructura-Actividad , Fármacos Anti-VIH/farmacología
5.
Science ; 375(6583): 869-874, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35201874

RESUMEN

Catalytic deracemization of α-branched aldehydes is a direct strategy to construct enantiopure α-tertiary carbonyls, which are essential to pharmaceutical applications. Here, we report a photochemical E/Z isomerization strategy for the deracemization of α-branched aldehydes by using simple aminocatalysts and readily available photosensitizers. A variety of racemic α-branched aldehydes could be directly transformed into either enantiomer with high selectivity. Rapid photodynamic E/Z isomerization and highly stereospecific iminium/enamine tautomerization are two key factors that underlie the enantioenrichment. This study presents a distinctive photochemical E/Z isomerization strategy for externally tuning enamine catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...