Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602103

RESUMEN

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Asunto(s)
Proteína Similar al Receptor de Calcitonina , Enfermedad de la Arteria Coronaria , Células Endoteliales , Elementos de Facilitación Genéticos , Polimorfismo de Nucleótido Simple , Estrés Mecánico , Humanos , Células Endoteliales/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Mecanotransducción Celular , Células Cultivadas , Regulación de la Expresión Génica , Unión Proteica , Predisposición Genética a la Enfermedad , Sitios de Unión
2.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38231044

RESUMEN

Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.


Asunto(s)
Aterosclerosis , Células Endoteliales , Mecanotransducción Celular , Humanos , Aterosclerosis/genética , Endotelio Vascular
3.
Nanoscale ; 14(42): 15821-15831, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36255381

RESUMEN

To address CO2 emissions caused by the overuse of fossil fuels, photocatalytic CO2 reduction from metal-organic frameworks (MOFs) to valuable chemicals is critical for energy conversion and storage. Core-shell MOFs improve interfacial interactions, increasing the number of active sites in the catalyst, thereby improving the photocatalytic reduction. In this work, the catalytic performance of Fe/Ni-MOFs toward photocatalytic CO2 reduction was improved using a bimetallic strategy. We successfully synthesized a series of Fe/Ni-MOFs with a core-shell structure using a single-step approach combined with hydrothermal synthesis. By altering the synthesis conditions of the bimetallic organic skeleton and contrasting it with a single MOF, we successfully synthesized Fe/Ni-T120 through an efficient photocatalytic reduction of CO2. The results of photocatalytic CO2 reduction experiments indicated that upon using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the CO evolution rate of Fe/Ni-T120 reached 9.74 mmol g-1 h-1 and the CO2 to CO selectivity reached up to 92.1%. Additionally, Fe/Ni-T120 has a broad response range to visible light, a high photocurrent intensity, good chemical stability, and strong photocatalytic efficiency, even after repeated cycles. This study proposes a straightforward method for producing adaptable and stable MOFs for effective photocatalytic CO2 reduction that is driven by visible light.

4.
Sci Adv ; 8(3): eabl8096, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061532

RESUMEN

Although atherosclerosis preferentially develops at arterial curvatures and bifurcations where disturbed flow (DF) activates endothelium, therapies targeting flow-dependent mechanosensing pathways in the vasculature are unavailable. Here, we provided experimental evidence demonstrating a previously unidentified causal role of DF-induced endothelial TXNDC5 (thioredoxin domain containing 5) in atherosclerosis. TXNDC5 was increased in human and mouse atherosclerotic lesions and induced in endothelium subjected to DF. Endothelium-specific Txndc5 deletion markedly reduced atherosclerosis in ApoE-/- mice. Mechanistically, DF-induced TXNDC5 increases proteasome-mediated degradation of heat shock factor 1, leading to reduced heat shock protein 90 and accelerated eNOS (endothelial nitric oxide synthase) protein degradation. Moreover, nanoparticles formulated to deliver Txndc5-targeting CRISPR-Cas9 plasmids driven by an endothelium-specific promoter (CDH5) significantly increase eNOS protein and reduce atherosclerosis in ApoE-/- mice. These results delineate a new molecular paradigm that DF-induced endothelial TXNDC5 promotes atherosclerosis and establish a proof of concept of targeting endothelial mechanosensitive pathways in vivo against atherosclerosis.

5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880134

RESUMEN

Vascular disease is a leading cause of morbidity and mortality in the United States and globally. Pathological vascular remodeling, such as atherosclerosis and stenosis, largely develop at arterial sites of curvature, branching, and bifurcation, where disturbed blood flow activates vascular endothelium. Current pharmacological treatments of vascular complications principally target systemic risk factors. Improvements are needed. We previously devised a targeted polyelectrolyte complex micelle to deliver therapeutic nucleotides to inflamed endothelium in vitro by displaying the peptide VHPKQHR targeting vascular cell adhesion molecule 1 (VCAM-1) on the periphery of the micelle. This paper explores whether this targeted nanomedicine strategy effectively treats vascular complications in vivo. Disturbed flow-induced microRNA-92a (miR-92a) has been linked to endothelial dysfunction. We have engineered a transgenic line (miR-92aEC-TG /Apoe-/- ) establishing that selective miR-92a overexpression in adult vascular endothelium causally promotes atherosclerosis in Apoe-/- mice. We tested the therapeutic effectiveness of the VCAM-1-targeting polyelectrolyte complex micelles to deliver miR-92a inhibitors and treat pathological vascular remodeling in vivo. VCAM-1-targeting micelles preferentially delivered miRNA inhibitors to inflamed endothelial cells in vitro and in vivo. The therapeutic effectiveness of anti-miR-92a therapy in treating atherosclerosis and stenosis in Apoe-/- mice is markedly enhanced by the VCAM-1-targeting polyelectrolyte complex micelles. These results demonstrate a proof of concept to devise polyelectrolyte complex micelle-based targeted nanomedicine approaches treating vascular complications in vivo.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Animales , Aterosclerosis/genética , Colorantes Fluorescentes , Regulación de la Expresión Génica , Humanos , Inflamación , Masculino , Ratones , Ratones Noqueados para ApoE , Ratones Transgénicos , Micelas , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Farmacología en Red , Polielectrolitos , Regulación hacia Arriba , Molécula 1 de Adhesión Celular Vascular
6.
ACS Appl Mater Interfaces ; 13(34): 40571-40581, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410096

RESUMEN

Use of light is considered an effective approach to convert CO2 into usable chemical energy. In the present study, an iron- and nickel-containing bimetallic metal-organic framework (MOF) was synthesized via a simple solvothermal route. SnO2 was then composited with the said MOF, and the obtained material was calcined and annealed to fabricate a series of nanophotocatalysts. The annealed sample displayed superior photocatalytic activity to the calcined sample, possibly due to the carbon-nitrogen layer formed after annealing mediating the charge-transfer process. The results of photocatalytic experiments indicated that using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the catalyst sample was annealed at 450 °C (NiFe2O4@N/C/SnO2-450) to afford the highest CO yield from CO2 (2057.41 µmol g-1 h-1). The increase in the photocatalytic ability of the nanocomposites is basically attributed to multiple synergistic effects between NiFe2O4 and SnO2, which reduce the recombination probability of the photo-induced electrons and holes. Ultimately, a photocatalytic reaction mechanism is proposed for NiFe2O4@N/C/SnO2 in the reduction of CO2.

7.
Nat Metab ; 3(5): 714-727, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34031595

RESUMEN

Single-cell motility is spatially heterogeneous and driven by metabolic energy. Directly linking cell motility to cell metabolism is technically challenging but biologically important. Here, we use single-cell metabolic imaging to measure glycolysis in individual endothelial cells with genetically encoded biosensors capable of deciphering metabolic heterogeneity at subcellular resolution. We show that cellular glycolysis fuels endothelial activation, migration and contraction and that sites of high lactate production colocalize with active cytoskeletal remodelling within an endothelial cell. Mechanistically, RhoA induces endothelial glycolysis for the phosphorylation of cofilin and myosin light chain in order to reorganize the cytoskeleton and thus control cell motility; RhoA activation triggers a glycolytic burst through the translocation of the glucose transporter SLC2A3/GLUT3 to fuel the cellular contractile machinery, as demonstrated across multiple endothelial cell types. Our data indicate that Rho-GTPase signalling coordinates energy metabolism with cytoskeleton remodelling to regulate endothelial cell motility.


Asunto(s)
Células Endoteliales/metabolismo , Metabolismo Energético , Transportador de Glucosa de Tipo 3/genética , Glucosa/metabolismo , Imagen Molecular , Análisis de la Célula Individual/métodos , Biomarcadores , Movimiento Celular , Células Cultivadas , Biología Computacional/métodos , Citoesqueleto/metabolismo , Endotelio Vascular , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis , Humanos , Fenómenos Mecánicos , Modelos Biológicos , Imagen Molecular/métodos , Proteína de Unión al GTP rhoA/metabolismo
9.
Nanoscale ; 13(20): 9075-9090, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-33978022

RESUMEN

Metal-organic frameworks (MOFs) are porous materials composed of metal centers and organic connectors. They are formed by complexation reactions and exhibit characteristics of both polymers and coordination compounds. They exhibit numerous advantageous features, including a large specific surface area, adjustable pore size/shape, and modifiable pore wall functional groups. Consequently, MOFs have been extensively applied in the photocatalytic reduction of carbon dioxide (CO2). Despite considerable research on cobalt-based MOFs, the photocatalytic reduction of CO2 in the presence of these materials remains challenging. The present review summarizes the current studies concerning the utilization of cobalt-based MOFs in the photocatalytic reduction of CO2. Additionally, approaches used to enhance the catalytic reduction performance are evaluated and the challenges associated with Co-based MOFs are discussed.

10.
Environ Sci Pollut Res Int ; 28(17): 21674-21683, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411297

RESUMEN

Based on the development concepts of "innovation, coordination, green, opening and sharing," a high-quality economic evaluation index system is constructed using city-level data in Yangtze River Economic Belt (YREB), China. Further, the spatial lag model is used to empirically study the effects of environmental regulation, foreign direct investment, and its interaction term on the high-quality economic development. The results show that environmental regulation is conducive to promoting high-quality economic development, which provides a certain empirical basis for the Porter Hypothesis. In addition, foreign direct investment also plays a significant positive role. Specifically, environmental regulation has positive impacts on the relationship between foreign direct investment and the high-quality economic development. Finally, this paper puts forward some countermeasures and suggestions, such as improving environmental regulation policy and actively introducing high-quality foreign direct investment.


Asunto(s)
Desarrollo Económico , Ríos , China , Ciudades , Política Ambiental
11.
Nat Commun ; 11(1): 4254, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848143

RESUMEN

Pulmonary fibrosis (PF) is a major public health problem with limited therapeutic options. There is a clear need to identify novel mediators of PF to develop effective therapeutics. Here we show that an ER protein disulfide isomerase, thioredoxin domain containing 5 (TXNDC5), is highly upregulated in the lung tissues from both patients with idiopathic pulmonary fibrosis and a mouse model of bleomycin (BLM)-induced PF. Global deletion of Txndc5 markedly reduces the extent of PF and preserves lung function in mice following BLM treatment. Mechanistic investigations demonstrate that TXNDC5 promotes fibrogenesis by enhancing TGFß1 signaling through direct binding with and stabilization of TGFBR1 in lung fibroblasts. Moreover, TGFß1 stimulation is shown to upregulate TXNDC5 via ER stress/ATF6-dependent transcriptional control in lung fibroblasts. Inducing fibroblast-specific deletion of Txndc5 mitigates the progression of BLM-induced PF and lung function deterioration. Targeting TXNDC5, therefore, could be a novel therapeutic approach against PF.


Asunto(s)
Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Tiorredoxinas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Eliminación de Gen , Humanos , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Estabilidad Proteica , Fibrosis Pulmonar/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta/química , Transducción de Señal , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Regulación hacia Arriba
12.
Sci Rep ; 9(1): 15691, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666565

RESUMEN

Hand-foot-mouth disease (HFMD) is an acute intestinal virus infectious disease which is one of major public health problems in mainland China. Previous studies indicated that HFMD was significantly influenced by climatic factors, but the associated factors were different in different areas and few study on HFMD forecast models was conducted. Here, we analyzed epidemiological characteristics of HFMD in Yiwu City, Zhejiang Province and constructed three forecast models. Overall, a total of 32554 HFMD cases were reported and 12 cases deceased in Yiwu City, Zhejiang Province. The incidence of HFMD peaked every other year and the curve of HFMD incidence had an approximately W-shape. The majority of HFMD cases were children and 95.76% cases aged ≤5 years old from 2008 to 2016. Furthermore, we constructed and compared three forecast models using autoregressive integrated moving average (ARIMA) model, negative binomial regression model (NBM), and quasi-Poisson generalized additive model (GAM). All the three models had high agreements between predicted values and observed values, while GAM fitted best. The exposure-response curve of monthly mean temperature and HFMD was approximately V-shaped. Our study explored epidemiological characteristics of HFMD in Yiwu City and provided accurate methods for early warning which would be great importance for the control and prevention of HFMD.


Asunto(s)
Predicción , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/patología , Conceptos Meteorológicos , Niño , Preescolar , China/epidemiología , Femenino , Enfermedad de Boca, Mano y Pie/etiología , Enfermedad de Boca, Mano y Pie/virología , Humanos , Lactante , Masculino , Modelos Teóricos , Temperatura , Viento
13.
Exp Appl Acarol ; 79(1): 125-135, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31396760

RESUMEN

To investigate the prevalence of Anaplasma, Ehrlichia, Bartonella and Theileria, we collected ticks from small mammals in six counties of Zhejiang Province in southeastern China. Polymerase chain reaction (PCR) amplification was performed to test Anaplasma, Ehrlichia, Bartonella and Theileria in tick samples. Positive PCR products were sequenced and then compared with previously published sequences deposited in GenBank using BLAST. About 292 adult ticks were captured and the dominant tick species were Ixodes sinensis and Haemaphysalis longicornis. Overall, 34 ticks (11.6%) were tested positive for at least one pathogen of Anaplasma, Ehrlichia, Bartonella and Theileria. Rates of PCR-positivity to Anaplasma, Ehrlichia, Bartonella and Theileria were 5.5, 1.7, 2.4 and 2.4%, respectively. Positive rates of Anaplasma, Bartonella and Theileria were significantly different among ticks of different species. Prevalence of Anaplasma and Theileria varied significantly among ticks of different counties. Anaplasma, Ehrlichia, Bartonella and Theileria were widely prevalent in ticks in Zhejiang Province suggesting other tick-borne pathogens should also be suspected if patients had history of tick bites.


Asunto(s)
Anaplasma/fisiología , Bartonella/fisiología , Ehrlichia/fisiología , Ixodidae/microbiología , Ixodidae/parasitología , Theileria/fisiología , Animales , China , Femenino , Masculino , Especificidad de la Especie
14.
Acta Crystallogr C Struct Chem ; 75(Pt 7): 969-978, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271386

RESUMEN

Metal oxides have a large storage capacity when employed as anode materials for lithium-ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge-discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO-Co3O4 nanocomposites embedded in N-doped carbon (ZnO-Co3O4@N-C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal-organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N-doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as-prepared ZnO-Co3O4@N-C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO-Co3O4@N-C shows a discharge capacity of 2373 mAh g-1 at the first cycle and exhibits a retention capacity of 1305 mAh g-1 even after 300 cycles at 0.1 A g-1. In addition, a reversible capacity of 948 mAh g-1 is obtained at a current density of 2 A g-1, which delivers an excellent high-rate cycle ability.

15.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 812-821, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166936

RESUMEN

Heterostructures formed by the growth of one kind of nanomaterial in/on another have attracted increasing attention due to their microstructural characteristics and potential applications. In this work, SnS2-SnO2 heterostructures were successfully prepared by a facile hydrothermal method. Due to the enhanced visible-light absorption and efficient separation of photo-generated holes and electrons, the SnS2-SnO2 heterostructures display excellent photocatalytic performance for the degradation of rhodamine (RhB) under visible-light irradiation. Additionally, it is found that the introduction of graphene into the heterostructures further improved photocatalytic activity and stability. In particular, the optimized SnS2-SnO2/graphene photocatalyst can degrade 97.1% of RhB within 60 min, which is about 1.38 times greater than that of SnS2-SnO2 heterostructures. This enhanced photocatalytic activity could be attributed to the high surface area and the excellent electron accepting and transporting properties of graphene, which served as an acceptor of the generated electrons to suppress charge recombination. These results provide a new insight for the design and development of hybrid photocatalysts.

16.
J Colloid Interface Sci ; 542: 460-468, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30772508

RESUMEN

One-dimensional (1D) heterostructured photocatalysts with controllable texture properties and compositions have attracted increasing interest owing to their unique optical, structural, and electronic advantages. Herein, 1D Co3O4-SnO2 heteronanorods were rationally designed and synthesized through a facile solution-based approach. Benefiting from both of their heterostructural and compositional characteristics, the resulting Co3O4-SnO2 heteronanorods exhibit high photocatalytic performance for the degradation of Rhodamine B (RhB) under visible-light irridation. In particular, the photocatalyst with a Co3O4/SnO2 mass ratio of 1:1 provides the best photocatalytic performance, which can degrade 90% RhB within 120 min. Besides, several reaction parameters affecting RhB degradation, such as churning time, calcination temperature and pH value, are investigated in detail. The enhanced photocatalytic activity can be attributed to the broadening of absorption spectrum to visible-light regions and the efficient charge separation of photogenerated electron-hole pairs due to the formed p-n heterojunctions. The strategy reported here can be able to expand to fabricate other heterostructured photocatalysts for practical applications in the fields of photocatalysis, water splitting, and solar cells.

17.
J Hazard Mater ; 368: 204-213, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30677652

RESUMEN

Construction of heterostructures with proper band alignment and effective transport and separation of photogenerated charges is highly expected for photocatalysis. In this work, Ni-doped SnO2-SnS2 heterostructures (NiSnSO) are simply prepared by thermal oxidation of Ni-doped hierarchical SnS2 microspheres in the air. When applied for the photodegradation of organic contaminants, these NiSnSO exhibit excellent catalytic performance and stability due to the following advantages: (1) Ni doping leads to the enhancement of light harvesting of SnS2 in the visible light regions; (2) the formed heterojunctions promote the transport and separation of photogenerated electrons from SnS2 to SnO2; (3) Ni-SnO2 quantum dots facilitate the enrichment of reactants, provide more reactive centers and accelerate product diffusion in the reactive centers; (4) the SnS2 hierarchical microspheres constituted by nanoplates provide abundant active sites, high structural void porosity and accessible inner surface to faciliate the catalytic reactions. As a result, the optimized NiSnSO can photodegrade 92.7% methyl orange within 80 min under the irradiation of simulated sunlight, greatly higher than those of pure SnS2 (29.8%) and Ni-doped SnS2 (52.1%). These results reveal that the combination of heteroatom doping and heterostructure fabrication is a very promising strategy to deliver nanomaterials for effectively photocatalytic applications.

18.
J Proteome Res ; 18(1): 449-460, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30336044

RESUMEN

MicroRNAs are noncoding RNA species comprising 18-23 nucleotides that regulate host-virus interaction networks. Here, we show that enterovirus A71 infection in human rhabdomyosarcoma (RD) is regulated by miR-197 expression. Transfection of miR-197 mimic into RD cells inhibited virus replication by interfering with the viral RNA synthesis. We employed a combination of mass-spectrometry-based quantitative proteomics with the stable isotope labeling with amino acids in cell culture (SILAC) approach for the identification of the miR-197 target genes in RD cells and to investigate the differential expression of the prospective target proteins. A total of 1822 proteins were repeatedly identified in miR-197-transfected RD cells, 106 of which were predicted to have seed sites by TargetScan. Notably, seven of eight selected genes potentially related to viral replication and immune response were validated as direct miR-197 targets, using a luciferase 3'-untranslated region (UTR) reporter assay. The expression levels of three selected endogenous molecules (ITGAV, ETF1, and MAP2K1/MEK1) were significantly reduced when RD cells were transfected with a miR-197 mimic. Our results provide a comprehensive database of miR-197 targets, which might provide better insights into the understanding of host-virus interaction.


Asunto(s)
Enterovirus Humano A/fisiología , Interacciones Huésped-Patógeno , MicroARNs/fisiología , Proteómica/métodos , Rabdomiosarcoma/virología , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/farmacología , ARN Viral/efectos de los fármacos , Rabdomiosarcoma/genética , Replicación Viral/efectos de los fármacos
19.
Proc Natl Acad Sci U S A ; 115(48): E11349-E11358, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30429326

RESUMEN

Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies (GWAS) have identified chromosome 1p32.2 as strongly associated with CAD/IS; however, the causal mechanism related to this locus remains unknown. Using statistical analyses, assay of transposase accessible chromatin with whole-genome sequencing (ATAC-seq), H3K27ac/H3K4me2 ChIP with whole-genome sequencing (ChIP-seq), and CRISPR interference in human aortic endothelial cells (HAECs), our results demonstrate that rs17114036, a common noncoding polymorphism at 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR-Cas9-based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional shear stress by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus (caQTL) mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays demonstrate that CAD/IS-protective allele at rs17114036 in PLPP3 intron 5 confers increased endothelial enhancer activity. ChIP-PCR and luciferase assays show that CAD/IS-protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2 (KLF2), which increases the enhancer activity under unidirectional flow. These results demonstrate that a human SNP contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cis-regulatory elements provide a previously unappreciated layer of regulatory control in cellular mechanosensing mechanisms.


Asunto(s)
Isquemia Encefálica/genética , Cromosomas Humanos Par 1/genética , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales/fisiología , Variación Genética , Accidente Cerebrovascular/genética , Alelos , Velocidad del Flujo Sanguíneo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Cromatina/genética , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/fisiopatología , Estudio de Asociación del Genoma Completo , Hemodinámica , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mecanotransducción Celular , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
20.
Nanotechnology ; 29(44): 445201, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30113910

RESUMEN

ZnO-based heterojunctions have found applications as self-powered ultraviolet photodetectors (PDs). However, high doping levels are not compatible with high mobility for metallic doped ZnO-based PDs so further development has been inhibited. This study demonstrates a method to increase the open-circuit voltage (V oc) that allows keeping a sufficiently high level of mobility of ZnO, using a ZnO nanorod/GaN heterojunction that incorporates graphene nanosheets as the active layer. These hybrid PDs have triple the value for V oc of PDs that have only pure ZnO and better exhibit photo-response characteristics. The results of surface Kelvin probe microscopy and x-ray photoelectron spectrometer show that the complex defects that occur because Zn interstitials form a shallow donor in ZnO are mainly responsible for the increase in the value of V oc. Using this functional nanostructure as an active layer represents a new method for the manufacture of high-performance self-powered PDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA