Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Water Sci Technol ; 89(9): 2273-2289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747949

RESUMEN

Water quality predicted accuracy is beneficial to river ecological management and water pollution prevention. Owing to water quality data has the characteristics of nonlinearity and instability, it is difficult to predict the change of water quality. This paper proposes a hybrid water quality prediction model based on variational mode decomposition optimized by the sparrow search algorithm (SSA-VMD) and bidirectional gated recursive unit (BiGRU). First, the sparrow search algorithm selects fuzzy entropy (FE) as the fitness function to optimize the two parameters of VMD, which improves the adaptability of VMD. Second, SSA-VMD is used to decompose the original data into several components with different center frequencies. Finally, BiGRU is employed to predict each component separately, which significantly improves predicted accuracy. The proposed model is validated using data about dissolved oxygen (DO) and the potential of hydrogen (pH) from the Xiaojinshan Monitoring Station in Qiandao Lake, Hangzhou, China. The experimental results show that the proposed model has superior prediction accuracy and stability when compared with other models, such as EMD-based models and other CEEMDAN-based models. The prediction accuracy of DO can reach 97.8% and pH is 96.1%. Therefore, the proposed model can provide technical support for river water quality protection and pollution prevention.


Asunto(s)
Modelos Teóricos , Calidad del Agua , Algoritmos , Oxígeno/química , Oxígeno/análisis , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno , China
2.
Environ Geochem Health ; 46(4): 127, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483668

RESUMEN

Dissolved oxygen is one of the important comprehensive indicators of river water quality, which reflects the degree of pollution in the water body. Monitoring and predicting dissolved oxygen are an important tool for water quality management, which helps to effectively maintain water ecological balance and prevent environmental problems. A single model cannot describe the dynamic characteristics of dissolved oxygen sequence, which affects the prediction accuracy. In order to obtain more accurate dissolved oxygen prediction results, decomposition techniques are commonly used to extract the main fluctuations and trends of water quality sequences. However, the high-frequency modes obtained from decomposition are still unstable. To solve this problem, this paper proposed a hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit. Firstly, dissolved oxygen sequence is preliminarily decomposed by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and obtain several intrinsic mode functions (IMF). The fuzzy entropy (FE) is calculated to quantify the complexity of the IMF. Then, variational mode decomposition improved by northern goshawk optimization is used to decompose the IMF with higher entropy. The nonlinearity and instability of the sequence are further weakened. Finally, the bidirectional gate recurrent unit (BiGRU) neural network is used to predict each IMF component, and the final prediction result is obtained by reconstructing the prediction results of each component. In order to verify the effectiveness of the proposed model, this paper selects the dissolved oxygen data of Xin'anjiang Reservoir as the research object. The experimental results show that the RMSE, MAE, MAPE, and R2 of the proposed model are 0.1164, 0.0894, 1.0403%, and 0.9939, respectively, which is best among other comparative prediction models (BP, LSTM, GRU, BiGRU, EMD-BiGRU, CEEMDAN-BiGRU, VMD-BiGRU, and GNO-VMD-BiGRU). Therefore, this model effectively deals with high volatility and nonlinear dissolved oxygen data and provides reference for water environment management and ecological protection.


Asunto(s)
Agua Dulce , Redes Neurales de la Computación , Entropía , Oxígeno , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA