Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396075

RESUMEN

Many methods exist for determining protein structures from cryogenic electron microscopy maps, but this remains challenging for RNA structures. Here we developed EMRNA, a method for accurate, automated determination of full-length all-atom RNA structures from cryogenic electron microscopy maps. EMRNA integrates deep learning-based detection of nucleotides, three-dimensional backbone tracing and scoring with consideration of sequence and secondary structure information, and full-atom construction of the RNA structure. We validated EMRNA on 140 diverse RNA maps ranging from 37 to 423 nt at 2.0-6.0 Å resolutions, and compared EMRNA with auto-DRRAFTER, phenix.map_to_model and CryoREAD on a set of 71 cases. EMRNA achieves a median accuracy of 2.36 Å root mean square deviation and 0.86 TM-score for full-length RNA structures, compared with 6.66 Å and 0.58 for auto-DRRAFTER. EMRNA also obtains a high residue coverage and sequence match of 93.30% and 95.30% in the built models, compared with 58.20% and 42.20% for phenix.map_to_model and 56.45% and 52.3% for CryoREAD. EMRNA is fast and can build an RNA structure of 100 nt within 3 min.

2.
Curr Opin Struct Biol ; 85: 102789, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402744

RESUMEN

Protein-protein interactions play crucial roles in many biological processes. Traditionally, protein complex structures are normally built by protein-protein docking. With the rapid development of artificial intelligence and its great success in monomer protein structure prediction, deep learning has widely been applied to modeling protein-protein complex structures through inter-protein contact prediction and end-to-end approaches in the past few years. This article reviews the recent advances of deep-learning-based approaches in modeling protein-protein complex structures as well as their advantages and limitations. Challenges and possible future directions are also briefly discussed in applying deep learning for the prediction of protein complex structures.


Asunto(s)
Aprendizaje Profundo , Inteligencia Artificial , Proteínas/química
3.
Proteins ; 91(12): 1658-1683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37905971

RESUMEN

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.


Asunto(s)
Algoritmos , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Conformación Proteica , Unión Proteica , Simulación del Acoplamiento Molecular , Biología Computacional/métodos , Programas Informáticos
4.
J Phys Chem B ; 127(42): 9021-9034, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37822259

RESUMEN

Scoring functions for protein-ligand interactions play a critical role in structure-based drug design. Owing to the good balance between general applicability and computational efficiency, knowledge-based scoring functions have obtained significant advancements and achieved many successes. Nevertheless, knowledge-based scoring functions face a challenge in utilizing the experimental affinity data and thus may not perform well in binding affinity prediction. Addressing the challenge, we have proposed an improved version of the iterative knowledge-based scoring function ITScore by considering binding affinity information, which is referred to as ITScoreAff, based on a large training set of 6216 protein-ligand complexes with both structures and affinity data. ITScoreAff was extensively evaluated and compared with ITScore, 33 traditional, and 6 machine learning scoring functions in terms of docking power, ranking power, and screening power on the independent CASF-2016 benchmark. It was shown that ITScoreAff obtained an overall better performance than the other 40 scoring functions and gave an average success rate of 85.3% in docking power, a correlation coefficient of 0.723 in scoring power, and an average rank correlation coefficient of 0.668 in ranking power. In addition, ITScoreAff also achieved the overall best screening power when the top 10% of the ranked database were considered. These results demonstrated the robustness of ITScoreAff and its improvement over existing scoring functions.


Asunto(s)
Diseño de Fármacos , Proteínas , Proteínas/química , Unión Proteica , Ligandos , Aprendizaje Automático , Simulación del Acoplamiento Molecular
5.
Nat Commun ; 14(1): 4935, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582780

RESUMEN

Membrane proteins are encoded by approximately a quarter of human genes. Inter-chain residue-residue contact information is important for structure prediction of membrane protein complexes and valuable for understanding their molecular mechanism. Although many deep learning methods have been proposed to predict the intra-protein contacts or helix-helix interactions in membrane proteins, it is still challenging to accurately predict their inter-chain contacts due to the limited number of transmembrane proteins. Addressing the challenge, here we develop a deep transfer learning method for predicting inter-chain contacts of transmembrane protein complexes, named DeepTMP, by taking advantage of the knowledge pre-trained from a large data set of non-transmembrane proteins. DeepTMP utilizes a geometric triangle-aware module to capture the correct inter-chain interaction from the coevolution information generated by protein language models. DeepTMP is extensively evaluated on a test set of 52 self-associated transmembrane protein complexes, and compared with state-of-the-art methods including DeepHomo2.0, CDPred, GLINTER, DeepHomo, and DNCON2_Inter. It is shown that DeepTMP considerably improves the precision of inter-chain contact prediction and outperforms the existing approaches in both accuracy and robustness.


Asunto(s)
Proteínas de la Membrana , Receptores Acoplados a Proteínas G , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Aprendizaje Automático , Biología Computacional/métodos , Algoritmos
6.
Nat Commun ; 14(1): 3217, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270635

RESUMEN

Cryo-EM has emerged as the most important technique for structure determination of macromolecular complexes. However, raw cryo-EM maps often exhibit loss of contrast at high resolution and heterogeneity over the entire map. As such, various post-processing methods have been proposed to improve cryo-EM maps. Nevertheless, it is still challenging to improve both the quality and interpretability of EM maps. Addressing the challenge, we present a three-dimensional Swin-Conv-UNet-based deep learning framework to improve cryo-EM maps, named EMReady, by not only implementing both local and non-local modeling modules in a multiscale UNet architecture but also simultaneously minimizing the local smooth L1 distance and maximizing the non-local structural similarity between processed experimental and simulated target maps in the loss function. EMReady was extensively evaluated on diverse test sets of 110 primary cryo-EM maps and 25 pairs of half-maps at 3.0-6.0 Å resolutions, and compared with five state-of-the-art map post-processing methods. It is shown that EMReady can not only robustly enhance the quality of cryo-EM maps in terms of map-model correlations, but also improve the interpretability of the maps in automatic de novo model building.

7.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36440949

RESUMEN

Protein-protein interactions play an important role in many biological processes. However, although structure prediction for monomer proteins has achieved great progress with the advent of advanced deep learning algorithms like AlphaFold, the structure prediction for protein-protein complexes remains an open question. Taking advantage of the Transformer model of ESM-MSA, we have developed a deep learning-based model, named DeepHomo2.0, to predict protein-protein interactions of homodimeric complexes by leveraging the direct-coupling analysis (DCA) and Transformer features of sequences and the structure features of monomers. DeepHomo2.0 was extensively evaluated on diverse test sets and compared with eight state-of-the-art methods including protein language model-based, DCA-based and machine learning-based methods. It was shown that DeepHomo2.0 achieved a high precision of >70% with experimental monomer structures and >60% with predicted monomer structures for the top 10 predicted contacts on the test sets and outperformed the other eight methods. Moreover, even the version without using structure information, named DeepHomoSeq, still achieved a good precision of >55% for the top 10 predicted contacts. Integrating the predicted contacts into protein docking significantly improved the structure prediction of realistic Critical Assessment of Protein Structure Prediction homodimeric complexes. DeepHomo2.0 and DeepHomoSeq are available at http://huanglab.phys.hust.edu.cn/DeepHomo2/.


Asunto(s)
Aprendizaje Profundo , Biología Computacional/métodos , Proteínas/química , Algoritmos , Aprendizaje Automático
8.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36573474

RESUMEN

Covalent inhibitors have received extensive attentions in the past few decades because of their long residence time, high binding efficiency and strong selectivity. Therefore, it is valuable to develop computational tools like molecular docking for modeling of covalent protein-ligand interactions or screening of potential covalent drugs. Meeting the needs, we have proposed HCovDock, an efficient docking algorithm for covalent protein-ligand interactions by integrating a ligand sampling method of incremental construction and a scoring function with covalent bond-based energy. Tested on a benchmark containing 207 diverse protein-ligand complexes, HCovDock exhibits a significantly better performance than seven other state-of-the-art covalent docking programs (AutoDock, Cov_DOX, CovDock, FITTED, GOLD, ICM-Pro and MOE). With the criterion of ligand root-mean-squared distance < 2.0 Å, HCovDock obtains a high success rate of 70.5% and 93.2% in reproducing experimentally observed structures for top 1 and top 10 predictions. In addition, HCovDock is also validated in virtual screening against 10 receptors of three proteins. HCovDock is computationally efficient and the average running time for docking a ligand is only 5 min with as fast as 1 sec for ligands with one rotatable bond and about 18 min for ligands with 23 rotational bonds. HCovDock can be freely assessed at http://huanglab.phys.hust.edu.cn/hcovdock/.


Asunto(s)
Algoritmos , Proteínas , Simulación del Acoplamiento Molecular , Ligandos , Proteínas/química , Unión Proteica
9.
J Chem Inf Model ; 62(22): 5806-5820, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36342197

RESUMEN

An important part in structure-based drug design is the selection of an appropriate protein structure. It has been revealed that a holo protein structure that contains a well-defined binding site is a much better choice than an apo structure in structure-based drug discovery. Therefore, it is valuable to obtain a holo-like protein conformation from apo structures in the case where no holo structure is available. Meeting the need, we present a robust approach to generate reliable holo-like structures from apo structures by ligand binding site refinement with restraints derived from holo templates with low homology. Our method was tested on a test set of 32 proteins from the DUD-E data set and compared with other approaches. It was shown that our method successfully refined the apo structures toward the corresponding holo conformations for 23 of 32 proteins, reducing the average all-heavy-atom RMSD of binding site residues by 0.48 Å. In addition, when evaluated against all the holo structures in the protein data bank, our method can improve the binding site RMSD for 14 of 19 cases that experience significant conformational changes. Furthermore, our refined structures also demonstrate their advantages over the apo structures in ligand binding mode predictions by both rigid docking and flexible docking and in virtual screening on the database of active and decoy ligands from the DUD-E. These results indicate that our method is effective in recovering holo-like conformations and will be valuable in structure-based drug discovery.


Asunto(s)
Proteínas , Ligandos , Conformación Proteica , Sitios de Unión , Proteínas/química , Bases de Datos de Proteínas , Unión Proteica
10.
Protein Sci ; 31(11): e4441, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36305764

RESUMEN

Protein-nucleic acid interactions are involved in various cellular processes. Therefore, determining the structures of protein-nucleic acid complexes can provide insights into the mechanisms of the interactions and thus guide the rational drug design to modulate these interactions. Due to the high cost and technical difficulties of solving complex structures experimentally, computational modeling such as molecular docking has been playing an important role in the study of molecular interactions. In order to make it easier for researchers to obtain biomolecular complex structures through molecular docking, we developed the HDOCK server for protein-protein and protein-RNA/DNA docking (accessed at http://hdock.phys.hust.edu.cn/). Since its first release in 2017, HDOCK has been widely used in the scientific community. As nucleic acids may include single-stranded (ss) RNA/DNA and double-stranded (ds) RNA/DNA, we now present an updated version of HDOCK, which offers new options for structural modeling of ssRNA, ssDNA, dsRNA, and dsDNA. We hope this update will better help the scientific community solve important biological problems, thereby advancing the field. In this article, we describe the general protocol of HDOCK with emphasis on the new functions on RNA/DNA modeling. Several application examples are also given to illustrate the usage of the new functions.


Asunto(s)
ARN , Programas Informáticos , ARN/química , Simulación del Acoplamiento Molecular , ADN/química , Proteínas/química , ADN de Cadena Simple
11.
Bioinformatics ; 38(17): 4109-4116, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35801933

RESUMEN

MOTIVATION: Cyclization is a common strategy to enhance the therapeutic potential of peptides. Many cyclic peptide drugs have been approved for clinical use, in which the disulfide-driven cyclic peptide is one of the most prevalent categories. Molecular docking is a powerful computational method to predict the binding modes of molecules. For protein-cyclic peptide docking, a big challenge is considering the flexibility of peptides with conformers constrained by cyclization. RESULTS: Integrating our efficient peptide 3D conformation sampling algorithm MODPEP2.0 and knowledge-based scoring function ITScorePP, we have proposed an extended version of our hierarchical peptide docking algorithm, named HPEPDOCK2.0, to predict the binding modes of the peptide cyclized through a disulfide against a protein. Our HPEPDOCK2.0 approach was extensively evaluated on diverse test sets and compared with the state-of-the-art cyclic peptide docking program AutoDock CrankPep (ADCP). On a benchmark dataset of 18 cyclic peptide-protein complexes, HPEPDOCK2.0 obtained a native contact fraction of above 0.5 for 61% of the cases when the top prediction was considered, compared with 39% for ADCP. On a larger test set of 25 cyclic peptide-protein complexes, HPEPDOCK2.0 yielded a success rate of 44% for the top prediction, compared with 20% for ADCP. In addition, HPEPDOCK2.0 was also validated on two other test sets of 10 and 11 complexes with apo and predicted receptor structures, respectively. HPEPDOCK2.0 is computationally efficient and the average running time for docking a cyclic peptide is about 34 min on a single CPU core, compared with 496 min for ADCP. HPEPDOCK2.0 will facilitate the study of the interaction between cyclic peptides and proteins and the development of therapeutic cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION: http://huanglab.phys.hust.edu.cn/hpepdock/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Péptidos Cíclicos , Programas Informáticos , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/metabolismo , Proteínas/química , Péptidos/química , Disulfuros , Unión Proteica
12.
Nat Commun ; 13(1): 4066, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831370

RESUMEN

Advances in microscopy instruments and image processing algorithms have led to an increasing number of cryo-electron microscopy (cryo-EM) maps. However, building accurate models into intermediate-resolution EM maps remains challenging and labor-intensive. Here, we propose an automatic model building method of multi-chain protein complexes from intermediate-resolution cryo-EM maps, named EMBuild, by integrating AlphaFold structure prediction, FFT-based global fitting, domain-based semi-flexible refinement, and graph-based iterative assembling on the main-chain probability map predicted by a deep convolutional network. EMBuild is extensively evaluated on diverse test sets of 47 single-particle EM maps at 4.0-8.0 Å resolution and 16 subtomogram averaging maps of cryo-ET data at 3.7-9.3 Å resolution, and compared with state-of-the-art approaches. We demonstrate that EMBuild is able to build high-quality complex structures that are comparably accurate to the manually built PDB structures from the cryo-EM maps. These results demonstrate the accuracy and reliability of EMBuild in automatic model building.


Asunto(s)
Aprendizaje Profundo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Conformación Proteica , Reproducibilidad de los Resultados
13.
J Am Chem Soc ; 144(23): 10622-10639, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35657057

RESUMEN

Gram-negative bacteria, especially the ones with multidrug resistance, post dire challenges to antibiotic treatments due to the presence of the outer membrane (OM), which blocks the entry of many antibiotics. Current solutions for such permeability issues, namely lipophilic-cationic derivatization of antibiotics and sensitization with membrane-active agents, cannot effectively potentiate the large, globular, and hydrophilic antibiotics such as vancomycin, due to ineffective disruption of the OM. Here, we present our solution for high-degree OM binding of vancomycin via a hybrid "derivatization-for-sensitization" approach, which features a combination of LPS-targeting lipo-cationic modifications on vancomycin and OM disruption activity from a sensitizing adjuvant. 106- to 107-fold potentiation of vancomycin and 20-fold increase of the sensitizer's effectiveness were achieved with a combination of a vancomycin derivative and its sensitizer. Such potentiation is the result of direct membrane lysis through cooperative membrane binding for the sensitizer-antibiotic complex, which strongly promotes the uptake of vancomycin and adds to the extensive antiresistance effectiveness. The potential of such derivatization-for-sensitization approach was also supported by the combination's potent in vivo antimicrobial efficacy in mouse model studies, and the expanded application of such strategy on other antibiotics and sensitizer structures.


Asunto(s)
Bacterias Gramnegativas , Vancomicina , Animales , Antibacterianos/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología
14.
J Cheminform ; 14(1): 26, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505401

RESUMEN

Cyclic peptides formed by disulfide bonds have been one large group of common drug candidates in drug development. Structural information of a peptide is essential to understand its interaction with its target. However, due to the high flexibility of peptides, it is difficult to sample the near-native conformations of a peptide. Here, we have developed an extended version of our MODPEP approach, named MODPEP2.0, to fast generate the conformations of cyclic peptides formed by a disulfide bond. MODPEP2.0 builds the three-dimensional (3D) structures of a cyclic peptide from scratch by assembling amino acids one by one onto the cyclic fragment based on the constructed rotamer and cyclic backbone libraries. Being tested on a data set of 193 diverse cyclic peptides, MODPEP2.0 obtained a considerable advantage in both accuracy and computational efficiency, compared with other sampling algorithms including PEP-FOLD, ETKDG, and modified ETKDG (mETKDG). MODPEP2.0 achieved a high sampling accuracy with an average C[Formula: see text] RMSD of 2.20 Å and 1.66 Å when 10 and 100 conformations were considered, respectively, compared with 3.41 Å and 2.62 Å for PEP-FOLD, 3.44 Å and 3.16 Å for ETKDG, 3.09 Å and 2.72 Å for mETKDG. MODPEP2.0 also reproduced experimental peptide structures for 81.35% of the test cases when an ensemble of 100 conformations were considered, compared with 54.95%, 37.50% and 50.00% for PEP-FOLD, ETKDG, and mETKDG. MODPEP2.0 is computationally efficient and can generate 100 peptide conformations in one second. MODPEP2.0 will be useful in sampling cyclic peptide structures and modeling related protein-peptide interactions, facilitating the development of cyclic peptide drugs.

15.
Bioinformatics ; 38(9): 2444-2451, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35199137

RESUMEN

MOTIVATION: Protein-protein interactions (PPI) play important roles in cellular activities. Due to the technical difficulty and high cost of experimental methods, there are considerable interests towards the development of computational approaches, such as protein docking, to decipher PPI patterns. One of the important and difficult aspects in protein docking is recognizing near-native conformations from a set of decoys, but unfortunately, traditional scoring functions still suffer from limited accuracy. Therefore, new scoring methods are pressingly needed in methodological and/or practical implications. RESULTS: We present a new deep learning-based scoring method for ranking protein-protein docking models based on a 3D RepVGG network, named TRScore. To recognize near-native conformations from a set of decoys, TRScore voxelizes the protein-protein interface into a 3D grid labeled by the number of atoms in different physicochemical classes. Benefiting from the deep convolutional RepVGG architecture, TRScore can effectively capture the subtle differences between energetically favorable near-native models and unfavorable non-native decoys without needing extra information. TRScore was extensively evaluated on diverse test sets including protein-protein docking benchmark 5.0 update set, DockGround decoy set, as well as realistic CAPRI decoy set and overall obtained a significant improvement over existing methods in cross-validation and independent evaluations. AVAILABILITY AND IMPLEMENTATION: Codes available at: https://github.com/BioinformaticsCSU/TRScore.


Asunto(s)
Proteínas , Proyectos de Investigación , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Proteínas/metabolismo , Unión Proteica , Conformación Proteica , Simulación del Acoplamiento Molecular
16.
ACS Chem Biol ; 17(2): 414-425, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35129954

RESUMEN

Site-specific modification of proteins has important applications in biological research and drug development. Reactive tags such as azide, alkyne, and tetrazine have been used extensively to achieve the abovementioned goal. However, bulky side-chain "ligation scars" are often left after the labeling and may hinder the biological application of such engineered protein products. Conjugation chemistry via dehydroalanine (Dha) may provide an opportunity for "traceless" ligation because the activated alkene moiety on Dha can then serve as an electrophile to react with radicalophile, thiol/amine nucleophile, and reactive phosphine probe to introduce a minimal linker in the protein post-translational modifications. In this report, we present a mild and highly efficient enzymatic approach to incorporate Dha with phosphothreonine/serine lyases, OspF and SpvC. These lyases originally catalyze an irreversible elimination reaction that converts a doubly phosphorylated substrate with phosphothreonine (pT) or phosphoserine (pS) to dehydrobutyrine (Dhb) or Dha. To generate a simple monophosphorylated tag for these lyases, we conducted a systematic approach to profile the substrate specificity of OspF and SpvC using peptide arrays and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry. The optimized tag, [F/Y/W]-pT/pS-[F/Y/W] (where [F/Y/W] indicates an aromatic residue), results in a ∼10-fold enhancement of the overall peptide labeling efficiency via Dha chemistry and enables the first demonstration of protein labeling as well as live cell labeling with a minimal ligation linker via enzyme-mediated incorporation of Dha.


Asunto(s)
Liasas , Alanina/análogos & derivados , Alanina/química , Liasas/metabolismo , Fosfotreonina/metabolismo , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Chem Inf Model ; 62(3): 740-750, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35068149

RESUMEN

Protein-protein interactions are crucial in many biological processes. Therefore, determining the structure of a protein-protein complex is valuable for understanding its molecular mechanisms and developing drugs. Molecular docking is a powerful computational tool in the prediction of protein-protein complex structures, in which a scoring function with good performance is very important. In this study, we have proposed a hybrid scoring function of atomic contact-based desolvation energies and distance-dependent interatomic potentials for protein-protein interactions, named HITScorePP, where the atomic contact desolvation energies were derived using an iterative method and the distance-dependent potentials were directly taken from our ITScorePP scoring function. Integrating the hybrid scoring function into our fast Fourier transform (FFT) based HDOCK docking scheme, the updated docking program, named HDOCK2.0, significantly improved the docking performance on the 55 newly added complexes in the protein docking benchmark 5.0 and a data set of 19 antibacterial protein complexes. HDOCK2.0 was also compared with four other state-of-the-art docking programs including Rosetta, ZDOCK3.0.2, FRODOCK3.0, ATTRACT, and PatchDock and obtained the overall best performance in binding mode predictions. These results demonstrated the accuracy of our hybrid scoring function and the necessity of included desolvation effects in protein-protein docking.


Asunto(s)
Algoritmos , Proteínas , Simulación del Acoplamiento Molecular , Fenómenos Físicos , Unión Proteica , Proteínas/química
18.
Drug Discov Today ; 27(3): 838-847, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34718205

RESUMEN

Nucleic acid (NA)-ligand interactions have crucial roles in many cellular processes and, thus, are increasingly attracting therapeutic interest in drug discovery. Molecular docking is a valuable tool for studying molecular interactions. However, because NAs differ significantly from proteins in both their physical and chemical properties, traditional docking algorithms and scoring functions for protein-ligand interactions might not be applicable to NA-ligand docking. Therefore, various sampling strategies and scoring functions for NA-ligand interactions have been developed. Here, we review the basic principles and current status of docking algorithms and scoring functions for DNA/RNA-ligand interactions. We also discuss challenges and limitations of current docking and scoring approaches.


Asunto(s)
Ácidos Nucleicos , Algoritmos , Ligandos , Simulación del Acoplamiento Molecular , Ácidos Nucleicos/metabolismo , Unión Proteica , Proteínas/metabolismo
19.
J Chem Inf Model ; 61(9): 4771-4782, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34468128

RESUMEN

Nucleic acid-ligand interactions play an important role in numerous cellular processes such as gene function expression and regulation. Therefore, nucleic acids such as RNAs have become more and more important drug targets, where the structural determination of nucleic acid-ligand complexes is pivotal for understanding their functions and thus developing therapeutic interventions. Molecular docking has been a useful computational tool in predicting the complex structure between molecules. However, although a number of docking algorithms have been developed for protein-ligand interactions, only a few docking programs were presented for nucleic acid-ligand interactions. Here, we have developed a fast nucleic acid-ligand docking algorithm, named NLDock, by implementing our intrinsic scoring function ITScoreNL for nucleic acid-ligand interactions into a modified version of the MDock program. NLDock was extensively evaluated on four test sets and compared with five other state-of-the-art docking algorithms including AutoDock, DOCK 6, rDock, GOLD, and Glide. It was shown that our NLDock algorithm obtained a significantly better performance than the other docking programs in binding mode predictions and achieved the success rates of 73%, 36%, and 32% on the largest test set of 77 complexes for local rigid-, local flexible-, and global flexible-ligand docking, respectively. In addition, our NLDock approach is also computationally efficient and consumed an average of as short as 0.97 and 2.08 min for a local flexible-ligand docking job and a global flexible-ligand docking job, respectively. These results suggest the good performance of our NLDock in both docking accuracy and computational efficiency.


Asunto(s)
Ácidos Nucleicos , Algoritmos , ADN , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas/metabolismo , ARN
20.
Artículo en Inglés | MEDLINE | ID: mdl-34300045

RESUMEN

Coronavirus 2019 (COVID-19) is causing a severe pandemic that has resulted in millions of confirmed cases and deaths around the world. In the absence of effective drugs for treatment, non-pharmaceutical interventions are the most effective approaches to control the disease. Although some countries have the pandemic under control, all countries around the world, including the United States (US), are still in the process of controlling COVID-19, which calls for an effective epidemic model to describe the transmission dynamics of COVID-19. Meeting this need, we have extensively investigated the transmission dynamics of COVID-19 from 22 January 2020 to 14 February 2021 for the 50 states of the United States, which revealed the general principles underlying the spread of the virus in terms of intervention measures and demographic properties. We further proposed a time-dependent epidemic model, named T-SIR, to model the long-term transmission dynamics of COVID-19 in the US. It was shown in this paper that our T-SIR model could effectively model the epidemic dynamics of COVID-19 for all 50 states, which provided insights into the transmission dynamics of COVID-19 in the US. The present study will be valuable to help understand the epidemic dynamics of COVID-19 and thus help governments determine and implement effective intervention measures or vaccine prioritization to control the pandemic.


Asunto(s)
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA