Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gastric Cancer ; 26(1): 26-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35999321

RESUMEN

BACKGROUND: Imatinib mesylate (IM) is highly effective in the treatment of gastrointestinal stromal tumors (GISTs). However, the most of GISTs patients develop secondary drug resistance after 1-3 years of IM treatment. The aim of this study was to explore the IM-resistance mechanism via the multi-scope combined with plasma concentration of IM, genetic polymorphisms and plasma sensitive metabolites. METHODS: This study included a total of 40 GISTs patients who had been regularly treated and not treated with IM. The plasma samples were divided into three experiments, containing therapeutic drug monitoring (TDM), OCT1 genetic polymorphisms and non-targeted metabolomics. According to the data of above three experiments, the IM-resistant cell line, GIST-T1/IMR cells, was constructed for verification the IM-resistance mechanism. RESULTS: The results of non-targeted metabolomics analysis suggested that the sphingophospholipid metabolic pathway including the SPK1/S1P axis was inferred in IM-insensitive patients with GISTs. A GIST cell line (GIST-T1) was immediately induced as an IM resistance cell model (GIST-T1/IMR) and we found that blocking the signal pathway of SPK1/S1P in the GIST-T1/IMR could sensitize treatment of IM and reverse the IM-resistance. CONCLUSIONS: Our findings suggest that IM secondary resistance is associated with the elevation of S1P, and blockage the signaling pathway of SPK1/S1P warrants evaluation as a potential therapeutic strategy in IM-resistant GISTs. The design of this study from blood management, group information collection, IM plasma concentration with different elements, identification of sphingolipid metabolism and lastly verification the function of SPK1/S1P in the IM-resistance GISTs cells.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Neoplasias Gástricas , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Resistencia a Antineoplásicos , Neoplasias Gástricas/tratamiento farmacológico , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología
2.
Front Pharmacol ; 13: 900825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620280

RESUMEN

Cancer drug resistance has always been a major factor affecting the treatment of non-small cell lung cancer, which reduces the quality of life of patients. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology, as an efficient and convenient new gene-editing technology, has provided a lot of help to the clinic and accelerated the research of cancer and drug resistance. In this review, we introduce the mechanisms of drug resistance in non-small cell lung cancer (NSCLC), discuss how the CRISPR/Cas9 system can reverse multidrug resistance in NSCLC, and focus on drug resistance gene mutations. To improve the prognosis of NSCLC patients and further improve patients' quality of life, it is necessary to utilize the CRISPR/Cas9 system in systematic research on cancer drug resistance.

3.
Front Pharmacol ; 11: 1167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848774

RESUMEN

In December 2019, a severe outbreak of a novel coronavirus (COVID-19) occurred in the whole world, posing a great threat to people's health. With the outbreak and development of the epidemic, how to improve the cure rate, find effective drugs against this virus, has been the most urgent problem. Chloroquine (CQ) was verified effective against COVID-19 in vitro. As CQ's analogue, hydroxychloroquine (HCQ) was also reminded as a potential candidate for treating COVID-19. This review summarizes the latest clinical trials of CQ and HCQ against COVID-19 and its therapeutic regimen in China aiming to share their current usage to the whole world and provide insight into its appropriate future use in the treatment of COVID-19. Through searching the CNKI and Wangfang databases in Chinese language and PubMed, EMBASE, and Ovid databases in English language to identify published reports with the keywords including "coronavirus/COVID, chloroquine, hyroxychloroquine" in alone or combined, we found out the potential preclinical or clinical evidence for using CQ and HCQ against COVID-19. Consequently, we also searched the website of Chinese Clinical Trial Registry (http://www.chictr.org.cn/) till the day on 27th, June, 2020. This review found that there are 23 programs aimed to treat the different phases under COVID-19 pipeline in clinic with CQ and HCQ, totally. The inclusion criteria, exclusion criteria and therapeutic regimen were all shared to consult. Among them, seven have been canceled due to lack of patients or other objective factors. There are two trials have completed, which the potential relationship between usage and adverse reactions was discussed emphatically. Through literature research, we suggested that paid close attention to retinal toxicity and ophthalmologic adverse symptom of CQ and HCQ. And the outcome of HCQ in clinic shows better than CQ especially in protective effect with low dosage.

4.
Pharm Dev Technol ; 25(5): 556-565, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31958240

RESUMEN

Objective: A polymer-based nanoparticle was constructed to target sorafenib delivery to colorectal carcinoma cells and decrease the side effects of the drug.Methods: Sorafenib-loaded nanoparticles (S-NPs) based on PEG-PLGA were prepared using a double emulsion solvent evaporation method. The properties of S-NPs were evaluated and then their effects on the viability of colorectal cancer cells and normal human cells were assessed. The mechanism of S-NP internalization was explored using cellular uptake assays and in vitro fluorescence confocal imaging. Acute toxicity of sorafenib on its own or within S-NPs was assessed in mice.Results: S-NPs showed high drug loading and entrapment efficiencies, they did not cause extensive hemolysis, and they efficiently inhibited growth of colorectal cancer cell lines and human umbilical vein endothelial cells. S-NPs showed lower acute toxicity than the free drug.Conclusions: Loading sorafenib into nanoparticles can enhance its uptake by colorectal cancer cells and decrease its acute toxicity.


Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Sorafenib/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Composición de Medicamentos , Endocitosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Dosificación Letal Mediana , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Sorafenib/administración & dosificación , Sorafenib/química , Sorafenib/toxicidad , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...