Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
Nat Commun ; 15(1): 9059, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39428395

RESUMEN

Contactless microscale tweezers are highly effective tools for manipulating, patterning, and assembling bioparticles. However, current tweezers are limited in their ability to comprehensively manipulate bioparticles, providing only partial control over the six fundamental motions (three translational and three rotational motions). This study presents a joint subarray acoustic tweezers platform that leverages acoustic radiation force and viscous torque to control the six fundamental motions of single bioparticles. This breakthrough is significant as our manipulation mechanism allows for controlling the three translational and three rotational motions of single cells, as well as enabling complex manipulation that combines controlled translational and rotational motions. Moreover, our tweezers can gradually increase the load on an acoustically trapped cell to achieve controllable cell deformation critical for characterizing cell mechanical properties. Furthermore, our platform allows for three-dimensional (3D) imaging of bioparticles without using complex confocal microscopy by rotating bioparticles with acoustic tweezers and taking images of each orientation using a standard microscope. With these capabilities, we anticipate the JSAT platform to play a pivotal role in various applications, including 3D imaging, tissue engineering, disease diagnostics, and drug testing.


Asunto(s)
Acústica , Acústica/instrumentación , Rotación , Humanos , Pinzas Ópticas , Imagenología Tridimensional/métodos , Imagenología Tridimensional/instrumentación , Animales
2.
Adv Sci (Weinh) ; : e2403742, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422067

RESUMEN

Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation. Leveraging analytical methods of orbital angular momentum beam via iterative Wirtinger hologram algorithm, this study accomplish acoustography by facilitating orbital angular momentum traps, enabling continuous 2D and 3D acoustic manipulation of microparticles in any desired geometry, with phase modulation independent of intensity. Utilizing on-chip acoustography, the BEACON platform markedly increases the space-bandwidth product to 31 000 while attaining an enhanced resolution with a pixel size of ≈25 µm, surpassing the typical resolution of over 200 µm in previous holographic particle manipulation methods. The capabilities of BEACON are demonstrated in creating intricate triple helical tracing structures using microdroplets (20 µm in diameter) and those carrying DNA to validate the effectiveness of the acoustography and phase control methods. This study offers new particle manipulation opportunities, paving the way for next-generation biomedical systems and the future of contact-free precision manufacturing.

3.
Plast Reconstr Surg ; 154(4): 829e-842e, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39314107

RESUMEN

SUMMARY: Aging of the face is the result of the interrelation of three-dimensional changes occurring over time among the 5 different layers of the face and its associated structures. Knowledge regarding the causes of these changes and identification of new key anatomic structures have helped elucidate one of the most complex areas of the human body. This has resulted in the introduction of pharmacologic agents to help stop, mitigate, or counteract signs of aging and restore the youthful appearance of the face. The authors performed a systematic search of the literature to review the current highest-level evidence of facial antiaging pharmacologic agents. Pharmacologic and minimally invasive antiaging treatments can target different components of facial aging and continue to evolve. With continuous research efforts, traditional treatments, such as botulinum toxin type A, injectable fillers, and chemical peels, are emerging in newer, more effective formulations, with longer lasting clinical results. However, for soft-tissue descent and facial volume loss, surgery remains the standard treatment. An adequate understanding of the three-dimensional process of facial aging over time (the fourth dimension), facial anatomy, and the pharmacologic properties of antiaging/rejuvenation agents are the sine qua non of facial antiaging treatment. The specific modality should be tailored to patient characteristics, preferences, and goals.


Asunto(s)
Toxinas Botulínicas Tipo A , Técnicas Cosméticas , Cara , Rejuvenecimiento , Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Toxinas Botulínicas Tipo A/administración & dosificación , Rellenos Dérmicos/administración & dosificación , Envejecimiento/fisiología , Quimioexfoliación/métodos
4.
Sci Adv ; 10(32): eado8992, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110808

RESUMEN

Acoustic tweezers have gained substantial interest in biology, engineering, and materials science for their label-free, precise, contactless, and programmable manipulation of small objects. However, acoustic tweezers cannot independently manipulate multiple microparticles simultaneously. This study introduces acousto-dielectric tweezers capable of independently manipulating multiple microparticles and precise control over intercellular distances and cyclical cell pairing and separation for detailed cell-cell interaction analysis. Our acousto-dielectric tweezers leverage the competition between acoustic radiation forces, generated by standing surface acoustic waves (SAWs), and dielectrophoretic (DEP) forces, induced by gradient electric fields. Modulating these fields allows for the precise positioning of individual microparticles at points where acoustic radiation and DEP forces are in equilibrium. This mechanism enables the simultaneous movement of multiple microparticles along specified paths as well as cyclical cell pairing and separation. We anticipate our acousto-dielectric tweezers to have enormous potential in colloidal assembly, cell-cell interaction studies, disease diagnostics, and tissue engineering.


Asunto(s)
Pinzas Ópticas , Acústica , Humanos
5.
Nat Commun ; 15(1): 6854, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127732

RESUMEN

Therapeutic apheresis aims to selectively remove pathogenic substances, such as antibodies that trigger various symptoms and diseases. Unfortunately, current apheresis devices cannot handle small blood volumes in infants or small animals, hindering the testing of animal model advancements. This limitation restricts our ability to provide treatment options for particularly susceptible infants and children with limited therapeutic alternatives. Here, we report our solution to these challenges through an acoustofluidic-based therapeutic apheresis system designed for processing small blood volumes. Our design integrates an acoustofluidic device with a fluidic stabilizer array on a chip, separating blood components from minimal extracorporeal volumes. We carried out plasma apheresis in mouse models, each with a blood volume of just 280 µL. Additionally, we achieved successful plasmapheresis in a sensitized mouse, significantly lowering preformed donor-specific antibodies and enabling desensitization in a transplantation model. Our system offers a new solution for small-sized subjects, filling a critical gap in existing technologies and providing potential benefits for a wide range of patients.


Asunto(s)
Eliminación de Componentes Sanguíneos , Plasmaféresis , Animales , Eliminación de Componentes Sanguíneos/instrumentación , Eliminación de Componentes Sanguíneos/métodos , Ratones , Plasmaféresis/instrumentación , Plasmaféresis/métodos , Humanos , Dispositivos Laboratorio en un Chip , Femenino , Acústica/instrumentación
6.
Sens Actuators B Chem ; 4182024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39131888

RESUMEN

Droplet microfluidics has emerged as a valuable technology for a multitude of chemical and biomedical applications, offering the capability to create independent microenvironments for high-throughput assays. Central to numerous droplet microfluidic applications is the picoinjection of materials into individual droplets, yet existing picoinjection methods often exhibit high power requirements, lack biocompatibility, and/or suffer from limited controllability. Here, we present an acoustofluidic picoinjector that generates acoustic pressure at the droplet interface to enable on-demand, energy-efficient, and biocompatible injection at high precision. We validate our platform by performing acid-base titrations by iteratively injecting picoliter volume reagents into droplets to induce pH transitions detectable by color change in solution. Additionally, we demonstrate the versatility of the acoustofluidic picoinjector in the synthesis of metallic nanoparticles, yielding highly monodisperse and reproducible particle morphologies compared to conventional bulk-phase techniques. By facilitating controlled delivery of reagents or biological samples with unparalleled accuracy, acoustofluidic picoinjection broadens the utility of droplet microfluidics for a myriad of applications in chemical and biological research.

7.
ACS Nano ; 18(33): 22596-22607, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39132820

RESUMEN

The isolation of viruses from complex biological samples is essential for creating sensitive bioassays that assess the efficacy and safety of viral therapeutics and vaccines, which have played a critical role during the COVID-19 pandemic. However, existing methods of viral isolation are time-consuming and labor-intensive due to the multiple processing steps required, resulting in low yields. Here, we introduce the rapid, efficient, and high-resolution acoustofluidic isolation of viruses from complex biological samples via Bessel beam excitation separation technology (BEST). BEST isolates viruses by utilizing the nondiffractive and self-healing properties of 2D, in-plane acoustic Bessel beams to continuously separate cell-free viruses from biofluids, with high throughput and high viral RNA yield. By tuning the acoustic parameters, the cutoff size of isolated viruses can be easily adjusted to perform dynamic, size-selective virus isolation while simultaneously trapping larger particles and separating smaller particles and contaminants from the sample, achieving high-precision isolation of the target virus. BEST was used to isolate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from human saliva samples and Moloney Murine Leukemia Virus from cell culture media, demonstrating its potential use in both practical diagnostic applications and fundamental virology research. With high separation resolution, high yield, and high purity, BEST is a powerful tool for rapidly and efficiently isolating viruses. It has the potential to play an important role in the development of next-generation viral diagnostics, therapeutics, and vaccines.


Asunto(s)
SARS-CoV-2 , Saliva , SARS-CoV-2/aislamiento & purificación , Humanos , Saliva/virología , COVID-19/virología , Acústica , Animales , ARN Viral/aislamiento & purificación , ARN Viral/genética
8.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830843

RESUMEN

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ARN Polimerasa II , Ribonucleasa H , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Terminación de la Transcripción Genética , Daño del ADN , Origen de Réplica , Estructuras R-Loop , Línea Celular Tumoral
9.
Microsyst Nanoeng ; 10: 83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915828

RESUMEN

Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples.

10.
J Phys D Appl Phys ; 57(30)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38800708

RESUMEN

Surface acoustic wave (SAW)-enabled acoustofluidic technologies have recently atttracted increasing attention for applications in biology, chemistry, biophysics, and medicine. Most SAW acoustofluidic devices generate acoustic energy which is then transmitted into custom microfabricated polymer-based channels. There are limited studies on delivering this acoustic energy into convenient commercially-available glass tubes for manipulating particles and fluids. Herein, we have constructed a capillary-based SAW acoustofluidic device for multifunctional fluidic and particle manipulation. This device integrates a converging interdigitated transducer to generate focused SAWs on a piezoelectric chip, as well as a glass capillary that transports particles and fluids. To understand the actuation mechanisms underlying this device, we performed finite element simulations by considering piezoelectric, solid mechanic, and pressure acoustic physics. This experimental study shows that the capillary-based SAW acoustofluidic device can perform multiple functions including enriching particles, patterning particles, transporting particles and fluids, as well as generating droplets with controlled sizes. Given the usefulness of these functions, we expect that this acoustofluidic device can be useful in applications such as pharmaceutical manufacturing, biofabrication, and bioanalysis.

11.
J Am Chem Soc ; 146(21): 14705-14714, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38749060

RESUMEN

Hydrogel microparticles (HMPs) have been investigated widely for their use in tissue engineering and drug delivery applications. However, translation of these highly tunable systems has been hindered by covalent cross-linking methods within microparticles. Stereocomplexation, a stereospecific form of physical cross-linking, provides a robust yet degradable alternative for creating translationally relevant HMPs. Herein, 4-arm polyethylene glycol (PEG) stars were used as macromolecular initiators from which oligomeric poly(l-lactic acid) (PLLA) was polymerized with a degree of polymerization (DPn) of 20 on each arm. Similarly, complementary propargyl-containing ABA cross-linkers with enantiomeric poly(d-lactic acid) (PDLA) segments (DPn = 20) on each arm. Droplets of these gel precursors were formed via a microfluidic organic-in-oil-in-water system where microparticles self-assembled via stereocomplexation and were stabilized after precipitation in deionized water. By varying the flow rate of the dispersed phase, well-defined microparticles with diameters of 33.7 ± 0.5, 62.4 ± 0.6, and 105.7 ± 0.8 µm were fabricated. Gelation due to stereocomplexation was confirmed via wide-angle X-ray scattering in which HMPs exhibited the signature diffraction pattern of stereocomplexed PLA at 2θ = 12.2, 21.2, 24.2°. Differential scanning calorimetry also confirmed stereocomplexation by the appearance of a crystallization exotherm (Tc = 37 °C) and a high-temperature endotherm (Tm = 159 °C) that does not appear in the homocrystallization of PLLA or the hydrogel precursors. Additionally, the propargyl handle present on the cross-linker allows for pre- or post-assembly thiol-yne "click" functionalization as demonstrated by the addition of thiol-containing fluorophores to the HMPs.

12.
Microsyst Nanoeng ; 10: 59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736715

RESUMEN

Large-field nanoscale fluorescence imaging is invaluable for many applications, such as imaging subcellular structures, visualizing protein interactions, and high-resolution tissue imaging. Unfortunately, conventional fluorescence microscopy requires a trade-off between resolution and field of view due to the nature of the optics used to form the image. To overcome this barrier, we developed an acoustofluidic scanning fluorescence nanoscope that simultaneously achieves superior resolution, a large field of view, and strong fluorescent signals. The acoustofluidic scanning fluorescence nanoscope utilizes the superresolution capabilities of microspheres that are controlled by a programmable acoustofluidic device for rapid fluorescence enhancement and imaging. The acoustofluidic scanning fluorescence nanoscope resolves structures that cannot be resolved with conventional fluorescence microscopes with the same objective lens and enhances the fluorescent signal by a factor of ~5 without altering the field of view of the image. The improved resolution realized with enhanced fluorescent signals and the large field of view achieved via acoustofluidic scanning fluorescence nanoscopy provides a powerful tool for versatile nanoscale fluorescence imaging for researchers in the fields of medicine, biology, biophysics, and biomedical engineering.

13.
Sci Adv ; 10(16): eadk1855, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38630814

RESUMEN

Transfected stem cells and T cells are promising in personalized cell therapy and immunotherapy against various diseases. However, existing transfection techniques face a fundamental trade-off between transfection efficiency and cell viability; achieving both simultaneously remains a substantial challenge. This study presents an acoustothermal transfection method that leverages acoustic and thermal effects on cells to enhance the permeability of both the cell membrane and nuclear envelope to achieve safe, efficient, and high-throughput transfection of primary T cells and stem cells. With this method, two types of plasmids were simultaneously delivered into the nuclei of mesenchymal stem cells (MSCs) with efficiencies of 89.6 ± 1.2%. CXCR4-transfected MSCs could efficiently target cerebral ischemia sites in vivo and reduce the infarct volume in mice. Our acoustothermal transfection method addresses a key bottleneck in balancing the transfection efficiency and cell viability, which can become a powerful tool in the future for cellular and gene therapies.


Asunto(s)
Células Madre Mesenquimatosas , Ratones , Animales , Transfección , Células Madre Mesenquimatosas/metabolismo , Plásmidos , Membrana Celular , Tratamiento Basado en Trasplante de Células y Tejidos
14.
J Orthop Translat ; 45: 75-87, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511123

RESUMEN

Background: Prevention of adhesion formation following flexor tendon repair is essential for restoration of normal finger function. Although many medications have been studied in the experimental setting to prevent adhesions, clinical application is limited due to the complexity of application and delivery in clinical translation. Methods: In this study, optimal dosages of gelatin and pentamidine were validated by gelatin concentration test. Following cell viability, cell migration, live and dead cell, and cell adhesion assay of the Turkey tenocytes, a model of Turkey tendon repair was established to evaluate the effectiveness of the Pentamidine-Gelatin sheet. Results: Pentamidine carried with gelatin, a Food and drug administration (FDA) approved material for drug delivery, showed good dynamic release, biocompatibility, and degradation. The optimal dose of pentamidine (25ug) was determined in the in vivo study using tenocyte viability, migration, and cell adhesion assays. Further biochemical analyses demonstrated that this positive effect may be due to pentamidine downregulating the Wnt signaling pathway without affecting collagen expression. Conclusions: We tested a FDA-approved antibiotic, pentamidine, for reducing adhesion formation after flexor tendon repair in both in vitro and in vivo using a novel turkey animal model. Compared with the non-pentamidine treatment group, pentamidine treated turkeys had significantly reduced adhesions and improved digit function after six weeks of tendon healing. The translational potential of this article: This study for the first time showed that a common clinical drug, pentamidine, has a potential for clinical application to reduce tendon adhesions and improve tendon gliding function without interfering with tendon healing.

15.
Sci Adv ; 10(10): eadm8597, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457504

RESUMEN

Efficient isolation and analysis of exosomal biomarkers hold transformative potential in biomedical applications. However, current methods are prone to contamination and require costly consumables, expensive equipment, and skilled personnel. Here, we introduce an innovative spaceship-like disc that allows Acoustic Separation and Concentration of Exosomes and Nucleotide Detection: ASCENDx. We created ASCENDx to use acoustically driven disc rotation on a spinning droplet to generate swift separation and concentration of exosomes from patient plasma samples. Integrated plasmonic nanostars on the ASCENDx disc enable label-free detection of enriched exosomes via surface-enhanced Raman scattering. Direct detection of circulating exosomal microRNA biomarkers from patient plasma samples by the ASCENDx platform facilitated a diagnostic assay for colorectal cancer with 95.8% sensitivity and 100% specificity. ASCENDx overcomes existing limitations in exosome-based molecular diagnostics and holds a powerful position for future biomedical research, precision medicine, and point-of-care medical diagnostics.


Asunto(s)
Exosomas , Nucleótidos , Humanos , Biomarcadores , Medicina de Precisión , Espectrometría Raman
16.
Microsyst Nanoeng ; 10: 23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317693

RESUMEN

Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.

17.
Microsyst Nanoeng ; 10: 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169478

RESUMEN

The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.

18.
IEEE Rev Biomed Eng ; PP2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241119

RESUMEN

Techniques to resolve images beyond the diffraction limit of light with a large field of view (FOV) are necessary to foster progress in various fields such as cell and molecular biology, biophysics, and nanotechnology, where nanoscale resolution is crucial for understanding the intricate details of large-scale molecular interactions. Although several means of achieving super-resolutions exist, they are often hindered by factors such as high costs, significant complexity, lengthy processing times, and the classical tradeoff between image resolution and FOV. Microsphere-based super-resolution imaging has emerged as a promising approach to address these limitations. In this review, we delve into the theoretical underpinnings of microsphere-based imaging and the associated photonic nanojet. This is followed by a comprehensive exploration of various microsphere-based imaging techniques, encompassing static imaging, mechanical scanning, optical scanning, and acoustofluidic scanning methodologies. This review concludes with a forward-looking perspective on the potential applications and future scientific directions of this innovative technology.

19.
Case Reports Plast Surg Hand Surg ; 11(1): 2287027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38179208

RESUMEN

Eye-tracking technology was used to assess aesthetic surgical outcomes in transgender and gender diverse patients who are assigned female at birth and who seek gender affirming chest surgery. Post-surgery, observers focused more on scars than on the nipple-areolar complex. Ratings for similarity to cis-male chests significantly increased. This series highlights the objective evaluation of visual perception and masculinity assessments using eye-tracking.

20.
Sci Adv ; 9(51): eadj9964, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134285

RESUMEN

The study of molecular mechanisms at the single-cell level holds immense potential for enhancing immunotherapy and understanding neuroinflammation and neurodegenerative diseases by identifying previously concealed pathways within a diverse range of paired cells. However, existing single-cell pairing platforms have limitations in low pairing efficiency, complex manual operation procedures, and single-use functionality. Here, we report a multiparametric cellular immunity analysis by a modular acoustofluidic platform: CIAMAP. This platform enables users to efficiently sort and collect effector-target (i.e., NK92-K562) cell pairs and monitor the real-time dynamics of immunological response formation. Furthermore, we conducted transcriptional and protein expression analyses to evaluate the pathways that mediate effector cytotoxicity toward target cells, as well as the synergistic effect of doxorubicin on the cellular immune response. Our CIAMAP can provide promising building blocks for high-throughput quantitative single-cell level coculture to understand intercellular communication while also empowering immunotherapy by precision analysis of immunological synapses.


Asunto(s)
Inmunidad Celular , Inmunoterapia , Humanos , Células K562
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...