Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177676

RESUMEN

Nicotine acts as an angiogenic factor by stimulating endogenous cholinergic pathways. Several subtypes of nicotinic acetylcholine receptors (nAChRs) have been demonstrated to be closely correlated to the formation and progression of different types of cancers. Recently, several studies have found that nicotinic acetylcholine receptors α9 (α9-nAChRs) are highly expressed in breast tumors, especially in tumors derived from patients diagnosed at advanced stages. In vitro studies have demonstrated that activation of α9-nAChRs is associated with increased proliferation and migration of breast cancer. To study the tumor-promoting role of α9-nAChRs in breast cancers, we generated a novel anti-α9-nAChR and methoxy-polyethylene glycol (mPEG) bispecific antibody (α9 BsAb) for dissecting the molecular mechanism on α9-nAChR-mediated tumor progression. Unexpectedly, we discovered the angiogenic role of α9-nAChR in nicotine-induced neovascularization of tumors. It revealed α9 BsAbs reduced nicotine-induced endothelial cell tube formation, blood vessel development in Matrigel plug assay and angiogenesis in microtube array membrane murine model (MTAMs). To unbraid the molecular mechanism of α9-nAChR in nicotine-mediated angiogenesis, the α9 BsAbs were applied and revealed the inhibitory roles in nicotine-induced production of hypoxia-inducible factor-2 alpha (HIF-2α), vascular endothelial growth factor A (VEGF-A), phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2), vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase-9 (MMP9) from triple-negative breast cancer cells (MDA-MB-231), suggesting α9-nAChRs played an important role in nicotine-induced angiogenesis. To confirm our results, the shRNA targeting α9-nAChRs was designed and used to silence α9-nAChR expression and then evaluated the angiogenic role of α9-nAChRs. The results showed α9 shRNA also played an inhibitory effect in blocking the nicotine-induced angiogenic signaling. Taken together, α9-nAChR played a critical role in nicotine-induced angiogenesis and this bispecific antibody (α9 BsAb) may serve as a potential therapeutic candidate for treatments of the α9 positive cancers.

2.
Int J Biol Macromol ; 268(Pt 2): 131779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679250

RESUMEN

Natto contains a potent fibrinolytic enzyme called nattokinase (NK), which has thrombolytic, antihypertensive, antiatherosclerotic and lipid-lowering effects. Although NK has been recognized for its beneficial effect on humans with atherosclerotic cardiovascular disease (ASCVD), the underlying mechanisms involved in vascular inflammation-atherosclerosis development remain largely unknown. The current study aimed to explore the effects of NK on gene regulation, autophagy, necroptosis and inflammasome in vascular inflammation. The transcriptional profiles of NK in endothelial cells (ECs) by RNA sequencing (RNA-seq) revealed that NK affected THBS1, SRF and SREBF1 mRNA expression. In Q-PCR analysis, SRF and THBS1 were upregulated but SREBF1 was unaffected in ECs treated with NK. NK treatment induced autophagy and inhibited NLRP3 inflammasome and necroptosis in ECs. Furthermore, the inhibition of SRF or THBS1 by siRNA suppressed autophagy and enhanced the NLRP3 inflammasome and necroptosis. In a mouse model, NK reduced vascular inflammation by activating autophagy and inhibiting NLRP3 inflammasome and necroptosis. Our findings provide the first evidence that NK upregulates SRF and THBS1 genes, subsequently increasing autophagy and decreasing necroptosis and NLRP3 inflammasome formation to reduce vascular inflammation. Therefore, NK could serve as nutraceuticals or adjuvant therapies to reduce vascular inflammation and possible atherosclerosis progression.


Asunto(s)
Inflamación , Subtilisinas , Trombospondina 1 , Animales , Masculino , Ratones , Autofagia/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamasomas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Subtilisinas/metabolismo , Trombospondina 1/metabolismo , Trombospondina 1/genética , Ratones Endogámicos C57BL
3.
Commun Med (Lond) ; 4(1): 22, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378783

RESUMEN

BACKGROUND: Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. METHODS: We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. RESULTS: Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. CONCLUSIONS: Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.


Breast cancer is a complex disease, and not all patients respond well to existing treatments. In this study, we sought to understand why some patients with a specific type of breast cancer called triple-negative breast cancer respond poorly to current therapies. We also aimed to identify new treatments for these patients. We analyzed genetic data from breast cancer patients and identified a factor called S100A8/A9, which is linked to poor outcomes in early-stage cancer. We tested drugs that can reduce the levels of this factor in tumors and found promising results, especially when combined with another treatment called immunotherapy. Our findings suggest that S100A8/A9 could help predict how patients will respond to treatments, potentially leading to better therapies in the future.

4.
PLoS One ; 19(2): e0298240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315680

RESUMEN

PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 µg/mL and 37.9 µg*h/mL, respectively.


Asunto(s)
Anticuerpos Monoclonales , Receptor de Muerte Celular Programada 1 , Animales , Macaca fascicularis , Interleucina-15 , Administración Intravenosa , Citocinas , Inhibidores de Puntos de Control Inmunológico
5.
Br J Cancer ; 130(4): 620-627, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38135714

RESUMEN

OBJECTIVE: Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident breast cancer risk. SUBJECTS: In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort. RESULTS: In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk prediction accuracy. CONCLUSIONS: Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the biological basis of breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Estudios Prospectivos , Proteómica , Mamografía/métodos , Factores de Riesgo , Proteínas Sanguíneas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...