Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269802

RESUMEN

Few-shot semantic segmentation (FSS) is of tremendous potential for data-scarce scenarios, particularly in medical segmentation tasks with merely a few labeled data. Most of the existing FSS methods typically distinguish query objects with the guidance of support prototypes. However, the variances in appearance and scale between support and query objects from the same anatomical class are often exceedingly considerable in practical clinical scenarios, thus resulting in undesirable query segmentation masks. To tackle the aforementioned challenge, we propose a novel prototype-guided graph reasoning network (PGRNet) to explicitly explore potential contextual relationships in structured query images. Specifically, a prototype-guided graph reasoning module is proposed to perform information interaction on the query graph under the guidance of support prototypes to fully exploit the structural properties of query images to overcome intra-class variances. Moreover, instead of fixed support prototypes, a dynamic prototype generation mechanism is devised to yield a collection of dynamic support prototypes by mining rich contextual information from support images to further boost the efficiency of information interaction between support and query branches. Equipped with the proposed two components, PGRNet can learn abundant contextual representations for query images and is therefore more resilient to object variations. We validate our method on three publicly available medical segmentation datasets, namely CHAOS-T2, MS-CMRSeg, and Synapse. Experiments indicate that the proposed PGRNet outperforms previous FSS methods by a considerable margin and establishes a new state-of-the-art performance.

3.
Arch Toxicol ; 98(8): 2557-2576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703205

RESUMEN

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.


Asunto(s)
Biomarcadores , Enfermedad Veno-Oclusiva Hepática , Metabolómica , Alcaloides de Pirrolicidina , Receptores Citoplasmáticos y Nucleares , Alcaloides de Pirrolicidina/toxicidad , Animales , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/metabolismo , Enfermedad Veno-Oclusiva Hepática/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Masculino , Humanos , Biomarcadores/metabolismo , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Femenino , Persona de Mediana Edad , Ratones Endogámicos C57BL , Ácido Cólico , Adulto
4.
Cell Prolif ; 57(10): e13646, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38623945

RESUMEN

Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.


Asunto(s)
Hepatocitos , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones , Transducción de Señal , Transglutaminasas/metabolismo , Transglutaminasas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Ratones Endogámicos C57BL , Proliferación Celular , Células Cultivadas
5.
Med Rev (2021) ; 4(2): 154-157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38680685

RESUMEN

Bile acids are recognized as important signaling molecules that enable fine-tuned inter-communication from the liver, through the intestine, to virtually any organ, thus encouraging their pleiotropic physiological effects. Aging is a complex natural process defined as a progressive decline in cellular and organismal functions. A causal link between bile acids and the aging process is emerging. However, there are gaps in our understanding of the molecular mechanisms and precise targets responsible for the alteration of bile acid profiles and their role in the aging process. Intestinal barrier dysfunction leads to endotoxemia, systemic inflammation, insulin resistance, diabetes, lipid accumulation, obesity and fatty liver diseases, and health decline and death. In fact, intestinal barrier dysfunction is suggested to be an evolutionarily conserved hallmark of aging. Bile acids may modulate the aging process by regulating intestinal barrier integrity.

6.
J Hazard Mater ; 469: 133928, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447368

RESUMEN

How did the motorcycle emissions evolve during the economic development in China? To address data gaps, this study firstly measured the volatile organic compound (VOC) and intermediate-volatility organic compound (IVOC) emissions from motorcycles. The results confirmed that the emission control of motorcycles, especially small-displacement motorcycles, significantly lagged behind other gasoline-powered vehicles. For the China IV motorcycles, the average VOC and IVOC emission factors (EFs) were 2.74 and 7.78 times higher than the China V-VI light-duty gasoline vehicles, respectively. The notable high IVOC emissions were attributed to a dual influence from gasoline and lubricating oil. Furthermore, based on the complete EF dataset and economy-related activity data, a county-level emission inventory was developed in China. Motorcycle VOC and IVOC emissions changed from 2536.48 Gg and 197.19 Gg in 2006 to 594.21 Gg and 12.66 Gg in 2020, respectively. The absence of motorcycle IVOC emissions in the existed vehicular inventories led to an underestimation of up to 20%. Across the 15 years, the motorcycle VOC and IVOC emission hotspots were concentrated in the undeveloped regions, with the rural emissions reaching 5.81-10.14 times those of the urban emissions. This study provides the first-hand and close-to-realistic data to support motorcycle emission management and accurate air quality simulations.

7.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
8.
Hepatology ; 79(5): 1005-1018, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820064

RESUMEN

BACKGROUND AND AIMS: Although the benefits of vertical sleeve gastrectomy (VSG) surgery are well known, the molecular mechanisms by which VSG alleviates obesity and its complications remain unclear. We aim to determine the role of CYP8B1 (cytochrome P450, family 8, subfamily B, polypeptide 1) in mediating the metabolic benefits of VSG. APPROACH AND RESULTS: We found that expression of CYP8B1, a key enzyme in controlling the 12α-hydroxylated (12α-OH) bile acid (BA) to non-12α-OH BA ratio, was strongly downregulated after VSG. Using genetic mouse models of CYP8B1 overexpression, knockdown, and knockout, we demonstrated that overexpression of CYP8B1 dampened the metabolic improvements associated with VSG. In contrast, short hairpin RNA-mediated CYP8B1 knockdown improved metabolism similar to those observed after VSG. Cyp8b1 deficiency diminished the metabolic effects of VSG. Further, VSG-induced alterations to the 12α-OH/non-12α-OH BA ratio in the BA pool depended on CYP8B1 expression level. Consequently, intestinal lipid absorption was restricted, and the gut microbiota (GM) profile was altered. Fecal microbiota transplantation from wild type-VSG mice (vs. fecal microbiota transplantation from wild-type-sham mice) improved metabolism in recipient mice, while there were no differences between mice that received fecal microbiota transplantation from knockout-sham and knockout-VSG mice. CONCLUSIONS: CYP8B1 is a critical downstream target of VSG. Modulation of BA composition and gut microbiota profile by targeting CYP8B1 may provide novel insight into the development of therapies that noninvasively mimic bariatric surgery to treat obesity and its complications.


Asunto(s)
Cirugía Bariátrica , Esteroide 12-alfa-Hidroxilasa , Ratones , Animales , Esteroide 12-alfa-Hidroxilasa/metabolismo , Regulación hacia Abajo , Obesidad/metabolismo , Gastrectomía , Ratones Endogámicos C57BL
9.
Vascul Pharmacol ; 154: 107249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38070759

RESUMEN

The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Cirrosis Hepática , Fibrosis , Biomarcadores , Aterosclerosis/patología , Hígado/patología
10.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37967356

RESUMEN

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Asunto(s)
Antineoplásicos , Bencilisoquinolinas , Leucemia , Linfoma de Células T , Humanos , Ratones , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Bencilisoquinolinas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
11.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873324

RESUMEN

Background: The circadian clock exerts temporal control of metabolic pathways to maintain homeostasis, and its disruption leads to the development of obesity and insulin resistance. In adipose tissue, key regulators of clock machinery orchestrate adipogenic processes via the Wnt signaling pathway to impact mature adipocyte development. Methods: Based on the recent finding of chlorhexidine as a new clock activator, we determined its potential anti-adipogenic activities in distinct adipogenic progenitor models. Furthermore, we report the structural optimization of chlorhexidine leading to the discovery of analogs with improved efficacy in inhibiting adipogenesis. Results: In adipogenic progenitors with Per2::dLuc luciferase reporter, Chlorhexidine shortened clock period length with induction of core clock components. Consistent with its clock-activating function, Chlorhexidine robustly suppressed the lineage commitment and maturation of adipogenic mesenchymal precursors, with comparable effect on inhibiting preadipocyte terminal differentiation. Mechanistically, we show that Chlorhexidine induces signaling components of the Wnt pathway resulting in activation of Wnt activity. Via modification of its chemical scaffold, we generated analogs of chlorhexidine that led to the identification of CM002 as a new clock- activating molecule with improved anti-adipogenic activity. Conclusions: Collectively, our findings uncovered the anti-adipogenic functions of a new class of small molecule clock activators. These compounds provide novel chemical probes to dissect clock function in maintaining metabolic homeostasis and may have therapeutic implications in obesity and associated metabolic disorders.

12.
Phytomedicine ; 119: 154982, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37531904

RESUMEN

BACKGROUND: Obesity has emerged as a worldwide metabolic disease, given its rapid growth in global prevalence. Red ginseng extracts (RGS), one of the traditional processed products of ginseng, show the potential to improve the metabolic phenotype of obesity. However, the RGS mechanism for regulating obesity and late insulin resistance remains to be clarified. PURPOSE: This study aimed to emphasize the potential use of RGS in treatment of obesity and insulin resistance (IR) and explore the underlying mechanism affecting glucose and lipid metabolism improvements. METHODS: The role of RGS was evaluated in a high-fat diet (HFD) rodent model. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to characterize the glucose metabolism level. The expression of lipolysis proteins and uncoupling protein-1 (UCP-1) were investigated by western blot. Glucagon-like peptide-1 (GLP-1) and apical sodium-dependent bile acid transporter (ASBT) protein expression in the intestine were determined via immunofluorescence. UPLC-Q-TOF-MS were used to detect the alterations in bile acids (BAs) levels in serum, ileum, and inguinal white adipose tissue (iWAT). In addition, intestine-specific Tgr5 knockout mice were employed to verify the efficacy of RGS in improving obesity. RESULTS: RGS treatment alleviated dietary-induced dyslipidemia and IR in obese mice in a dose-dependent manner and improved glucose and insulin tolerance, and energy expenditure. RGS treatment significantly reduced lipid deposition and induced GLP-1 secretion in the intestine of wild-type mice but not in Tgr5ΔIN obese mice. Furthermore, RGS intervention increased BA levels in serum, ileum, and iWAT. The increase of circulating BAs in mice was related to the activation of ileal TGR5 and the promotion of ASBT translocation to the plasma membrane, thus affecting BA transport. Next, the increased level of circulating BAs entered the periphery, which might facilitate lipolysis and energy consumption by activating TGR5 in iWAT. CONCLUSION: Our results demonstrated that RGS significantly alleviated HFD-induced obesity and insulin resistance in mice. RGS intervention improved glucose metabolism, promoted lipolysis, and energy metabolism by activating TGR5 in the intestine. In addition, we found that activating intestinal TGR5 facilitated the localization of ASBT to the plasma membrane, which ultimately promoted the transport of BAs to regulate metabolic phenotype.


Asunto(s)
Resistencia a la Insulina , Insulinas , Ratones , Animales , Receptores Acoplados a Proteínas G/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Transducción de Señal , Obesidad/tratamiento farmacológico , Glucosa/metabolismo , Intestinos , Ácidos y Sales Biliares , Péptido 1 Similar al Glucagón/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
13.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513205

RESUMEN

The regulation of bile acid pathways has become a particularly promising therapeutic strategy for a variety of metabolic disorders, cancers, and diseases. However, the hydrophobicity of bile acids has been an obstacle to clinical efficacy due to off-target effects from rapid drug absorption. In this report, we explored a novel strategy to design new structure fragments based on lithocholic acid (LCA) with improved hydrophilicity by introducing a polar "oxygen atom" into the side chain of LCA, then (i) either retaining the carboxylic acid group or replacing the carboxylic acid group with (ii) a diol group or (iii) a vinyl group. These novel fragments were evaluated using luciferase-based reporter assays and the MTS assay. Compared to LCA, the result revealed that the two lead compounds 1a-1b were well tolerated in vitro, maintaining similar potency and efficacy to LCA. The MTS assay results indicated that cell viability was not affected by dose dependence (under 25 µM). Additionally, computational model analysis demonstrated that compounds 1a-1b formed more extensive hydrogen bond networks with Takeda G protein-coupled receptor 5 (TGR5) than LCA. This strategy displayed a potential approach to explore the development of novel endogenous bile acids fragments. Further evaluation on the biological activities of the two lead compounds is ongoing.


Asunto(s)
Ácidos y Sales Biliares , Ácido Litocólico , Ácido Litocólico/farmacología , Ácidos y Sales Biliares/farmacología
14.
Cells ; 12(14)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37508557

RESUMEN

The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Humanos , Ácidos y Sales Biliares , Intestinos , Hígado , Microbioma Gastrointestinal/fisiología
15.
Nat Commun ; 14(1): 4464, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491425
16.
Front Genet ; 14: 1202409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303949

RESUMEN

Spatially resolved transcriptomics (SRT) provides an unprecedented opportunity to investigate the complex and heterogeneous tissue organization. However, it is challenging for a single model to learn an effective representation within and across spatial contexts. To solve the issue, we develop a novel ensemble model, AE-GCN (autoencoder-assisted graph convolutional neural network), which combines the autoencoder (AE) and graph convolutional neural network (GCN), to identify accurate and fine-grained spatial domains. AE-GCN transfers the AE-specific representations to the corresponding GCN-specific layers and unifies these two types of deep neural networks for spatial clustering via the clustering-aware contrastive mechanism. In this way, AE-GCN accommodates the strengths of both AE and GCN for learning an effective representation. We validate the effectiveness of AE-GCN on spatial domain identification and data denoising using multiple SRT datasets generated from ST, 10x Visium, and Slide-seqV2 platforms. Particularly, in cancer datasets, AE-GCN identifies disease-related spatial domains, which reveal more heterogeneity than histological annotations, and facilitates the discovery of novel differentially expressed genes of high prognostic relevance. These results demonstrate the capacity of AE-GCN to unveil complex spatial patterns from SRT data.

17.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37253698

RESUMEN

Spatially resolved transcriptomics (SRT) enable the comprehensive characterization of transcriptomic profiles in the context of tissue microenvironments. Unveiling spatial transcriptional heterogeneity needs to effectively incorporate spatial information accounting for the substantial spatial correlation of expression measurements. Here, we develop a computational method, SpaSRL (spatially aware self-representation learning), which flexibly enhances and decodes spatial transcriptional signals to simultaneously achieve spatial domain detection and spatial functional genes identification. This novel tunable spatially aware strategy of SpaSRL not only balances spatial and transcriptional coherence for the two tasks, but also can transfer spatial correlation constraint between them based on a unified model. In addition, this joint analysis by SpaSRL deciphers accurate and fine-grained tissue structures and ensures the effective extraction of biologically informative genes underlying spatial architecture. We verified the superiority of SpaSRL on spatial domain detection, spatial functional genes identification and data denoising using multiple SRT datasets obtained by different platforms and tissue sections. Our results illustrate SpaSRL's utility in flexible integration of spatial information and novel discovery of biological insights from spatial transcriptomic datasets.


Asunto(s)
Perfilación de la Expresión Génica , Aprendizaje , Transcriptoma
18.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G147-G157, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129245

RESUMEN

Although midnolin has been studied for over 20 years, its biological roles in vivo remain largely unknown, especially due to the lack of a functional animal model. Indeed, given our recent discovery that the knockdown of midnolin suppresses liver cancer cell tumorigenicity and that this antitumorigenic effect is associated with modulation of lipid metabolism, we hypothesized that knockout of midnolin in vivo could potentially protect from nonalcoholic fatty liver disease (NAFLD) which has become the most common cause of chronic liver disease in the Western world. Accordingly, in the present study, we have developed and now report on the first functional global midnolin knockout mouse model. Although the overwhelming majority of global homozygous midnolin knockout mice demonstrated embryonic lethality, heterozygous knockout mice were observed to be similar to wild-type mice in their viability and were used to determine the effect of reduced midnolin expression on NAFLD. We found that global heterozygous midnolin knockout attenuated the severity of NAFLD in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism. Collectively, our results support a role for midnolin in regulating cholesterol/lipid metabolism in the liver. Thus, midnolin may represent a novel therapeutic target for NAFLD. Finally, our observation that midnolin was essential for survival underscores the broad importance of this gene beyond its role in liver biology.NEW & NOTEWORTHY We have developed and now report on the first functional global midnolin knockout mouse model. We found that global heterozygous midnolin knockout attenuated the severity of nonalcoholic fatty liver disease (NAFLD) in mice fed a Western-style diet, high in fat, cholesterol, and fructose, and this attenuation in disease was associated with significantly reduced levels of large lipid droplets, hepatic free cholesterol, and serum LDL, with significantly differential gene expression involved in cholesterol/lipid metabolism.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fructosa/metabolismo , Dieta Alta en Grasa/métodos , Hígado/metabolismo , Colesterol/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
19.
Mech Ageing Dev ; 212: 111806, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003368

RESUMEN

Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Ratones , Animales , Osteoartritis/genética , Osteoartritis/patología , MicroARNs/genética , Ratones Noqueados , Debilidad Muscular , Condrocitos/patología
20.
MedComm (2020) ; 4(3): e248, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37063610

RESUMEN

Recent technological advances have re-invigorated the interest in nuclear translation (NT), but the underlying mechanisms and functional implications of NT remain unknown. Here we show that NT is enhanced in malignant cancer cells and is associated with rapid cell growth. Nuclear ribopuromycylation analyses in a panel of diverse cell lines revealed that NT is scarce in normal immortalized cells, but is ubiquitous and robust in malignant cancer cells. Moreover, NT occurs in the nucleolus and requires normal nucleolar function. Intriguingly, NT is reduced by cellular stresses and anti-tumor agents and positively correlates with cancer cell proliferation and growth. By using a modified puromycin-associated nascent chain proteomics, we further identified numerous oncoproteins that are preferentially translated in the nucleus, such as transforming growth factor-beta 2 (TGFB2) and nucleophosmin 1 (NMP1). Specific overexpression of TGFB2 and NMP1 messenger RNAs in the nucleus can increase their protein levels and promote tumorigenesis. These findings establish a previously unknown link between NT and malignancy and suggest that cancer cells might have adapted a mechanism of NT to support their need for rapid growth, which highlight the potential of NT in tumorigenesis and might also open up new possibilities for therapeutic targeting of cancer-specific cellular functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...