Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(48): 42266-42277, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29131573

RESUMEN

Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm-3. Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

2.
Nanoscale ; 8(26): 12977-89, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27304516

RESUMEN

Thermoplastic polyurethane (TPU) based conductive polymer composites (CPCs) with a reduced percolation threshold and tunable resistance-strain sensing behavior were obtained through the addition of synergistic carbon nanotubes (CNT) and graphene bifillers. The percolation threshold of graphene was about 0.006 vol% when the CNT content was fixed at 0.255 vol% that is below the percolation threshold of CNT/TPU nanocomposites. The synergistic effect between graphene and CNT was identified using the excluded volume theory. Graphene acted as a 'spacer' to separate the entangled CNTs from each other and the CNT bridged the broad gap between individual graphene sheets, which was beneficial for the dispersion of CNT and formation of effective conductive paths, leading to better electrical conductivity at a lower conductive filler content. Compared with the dual-peak response pattern of the CNT/TPU based strain sensors, the CPCs with hybrid conductive fillers displayed single-peak response patterns under small strain, indicating good tunability with the synergistic effect of CNT and graphene. Under larger strain, prestraining was adopted to regulate the conductive network, and better tunable single-peak response patterns were also obtained. The CPCs also showed good reversibility and reproductivity under cyclic extension. This study paves the way for the fabrication of CPC based strain sensors with good tunability.

3.
Mol Biol Evol ; 22(3): 725-34, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15548747

RESUMEN

Hmong-Mien (H-M) is a major language family in East Asia, and its speakers distribute primarily in southern China and Southeast Asia. To date, genetic studies on H-M speaking populations are virtually absent in the literature. In this report, we present the results of an analysis of genetic variations in the mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS1) region and diagnostic variants in the coding regions in 537 individuals sampled from 17 H-M populations across East Asia. The analysis showed that the haplogroups that are predominant in southern East Asia, including B, R9, N9a, and M7, account for 63% (ranging from 45% to 90%) of mtDNAs in H-M populations. Furthermore, analysis of molecular variance (AMOVA), phylogenetic tree analysis, and principal component (PC) analysis demonstrate closer relatedness between H-M and other southern East Asians, suggesting a general southern origin of maternal lineages in the H-M populations. The estimated ages of the mtDNA lineages that are specific to H-M coincide with those based on archeological cultures that have been associated with H-M. Analysis of genetic distance and phylogenetic tree indicated some extent of difference between the Hmong and the Mien populations. Together with the higher frequency of north-dominating lineages observed in the Hmong people, our results indicate that the Hmong populations had experienced more contact with the northern East Asians, a finding consistent with historical evidence. Moreover, our data defined some new (sub-)haplogroups (A6, B4e, B4f, C5, F1a1, F1a1a, and R9c), which will direct further efforts to improve the phylogeny of East Asian mtDNAs.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Filogenia , Asia Sudoriental , Pueblo Asiatico , Secuencia de Bases , China , Genética de Población , Haplotipos , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...