RESUMEN
Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 µM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.
Asunto(s)
Cadmio/toxicidad , Nicotiana/fisiología , Transcriptoma , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Humanos , Metales Pesados/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Nicotiana/metabolismo , Xilema/metabolismoRESUMEN
Chilling is a major abiotic factor limiting the growth, development, and productivity of plants. ß-aminobutyric acid (BABA), a new environmentally friendly agent, is widely used to induce plant resistance to biotic and abiotic stress. Calcium, as a signaling substance, participates in various physiological activities in cells and plays a positive role in plant defense against cold conditions. In this study, we used tobacco as a model plant to determine whether BABA could alleviate chilling stress and further to explore the relationship between BABA and Ca2+. The results showed that 0.2 mM BABA significantly reduced the damage to tobacco seedlings from chilling stress, as evidenced by an increase in photosynthetic pigments, the maintenance of cell structure, and upregulated expression of NtLDC1, NtERD10B, and NtERD10D. Furthermore, 0.2 mM BABA combined with 10 mM Ca2+ increased the fresh and dry weights of both roots and shoots markedly. Compared to that with single BABA treatment, adding Ca2+ reduced cold injury to the plant cell membrane, decreased ROS production, and increased antioxidant enzyme activities and antioxidant contents. The combination of BABA and Ca2+ also improved abscisic acid and auxin contents in tobacco seedlings under chilling stress, whereas ethylene glycol-bis (ß-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) reversed the effects of BABA. These findings suggested that BABA enhances the cold tolerance of tobacco and is closely related to the state of Ca2+ signaling.
RESUMEN
Acid invertase activities in roots and young seeds of a metalliferous population (MP) of Rumex dentatus were previously observed to be significantly higher than those of a non-metalliferous population (NMP) under Cu stress. To date, no acid invertase gene has been cloned from R. dentatus. Here, we isolated four full-length cDNAs from the two populations of R. dentatus, presumably encoding cell wall (RdnCIN1 and RdmCIN1 from the NMP and MP, respectively) and vacuolar invertases (RdnVIN1 and RdmVIN1 from the NMP and MP, respectively). Unexpectedly, RdnCIN1 and RdmCIN1 most likely encode special defective invertases with highly attenuated sucrose-hydrolyzing capacity. The transcript levels of RdmCIN1 were significantly higher than those of RdnCIN1 in roots and young seeds under Cu stress, whereas under control conditions, the former was initially lower than the latter. Unexpected high correlations were observed between the transcript levels of RdnCIN1 and RdmCIN1 and the activity of cell wall invertase, even though RdnCIN1 and RdmCIN1 do not encode catalytically active invertases. Similarly, the transcript levels of RdmVIN1 in roots and young seeds were increased under Cu stress, whereas those of RdnVIN1 were decreased. The high correlations between the transcript levels of RdnVIN1 and RdmVIN1 and the activity of vacuolar invertase indicate that RdnVIN1 and RdmVIN1 might control distinct vacuolar invertase activities in the two populations. Moreover, a possible indirect role for acid invertases in Cu tolerance, mediated by generating a range of sugars used as nutrients and signaling molecules, is discussed.
Asunto(s)
Pared Celular/efectos de los fármacos , Cobre/toxicidad , Rumex/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Vacuolas/efectos de los fármacos , beta-Fructofuranosidasa/genética , Pared Celular/enzimología , Pared Celular/genética , Cobre/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Rumex/genética , Rumex/metabolismo , Semillas/efectos de los fármacos , Semillas/enzimología , Semillas/genética , Contaminantes del Suelo/metabolismo , Vacuolas/enzimología , Vacuolas/genéticaRESUMEN
In order to manifest lower energy consumption and less labor employment, and provide the theoretical basis for constructing environmentally friendly modem tobacco agriculture, this paper analyzed gas composition of the chimney from a bulk-curing barn and the dispersion of sulfur dioxide (SO2) around the workshop cluster using ecom-J2KN flue gas analyzer and air sampler. During curing, the concentrations of carbon dioxide (CO2) and SO2 in the chimney were both highest at 38 degrees C, while the concentration of nitrogen oxides (NOx) was highest at 42 degrees C. The emission concentration of SO2 from the chimney was 1327.60-2218.40 mg x m(-3). Average SO2 emission would decrease by 49.7% through adding 4.0% of a sulfur-fixed agent. The highest concentrations of SO2 in the surface soil appeared at the yellowing stage. SO2 concentration in horizontal direction localized at 43-80 m exceeded 0.5 mg x m(-3). The highest concentration of SO2 (0.57 mg x m(-3)) was observed at 50 m. At 50 m in the downstream wind direction of the workshop cluster, SO2 concentration in vertical direction localized at 0.9-1.8 m exceeded 0.5 mg x m(-3), and the highest concentration of SO2 in vertical direction was 0.65 mg x m(-3) at 1.6 m. During curing, the average concentration of SO2 was decreased by 0.43 mg x m(-3) by using the sulfur-fixed agent. The polluted boundary was localized at 120 m in the downstream wind direction of the workshop cluster.
Asunto(s)
Agricultura/métodos , Contaminación Ambiental , Nicotiana , Suelo/química , Dióxido de Azufre/análisis , Dióxido de Carbono , Análisis Espacial , Temperatura , VientoRESUMEN
Sucrose metabolism in roots of metallophytes is very important for root growth and maintenance of heavy metal tolerance. However, rare researches have been carried out on this topic so far. We tested here a hypothesis that roots of copper-tolerant plants should manifest higher activities of sucrose-cleaving enzymes than non-tolerant plants for maintaining root growth under Cu stress. Plants of two contrasting populations of metallophyte Rumex dentatus, one from an ancient Cu mine (MP) and the other from a non-mine site (NMP), were treated with Cu in controlled experiments. Cu treatment resulted in a higher root biomass and root/shoot biomass ratio in MP compared to NMP. More complicated root system architecture was showed in MP under Cu stress. Activities and transcript levels of acid invertase as well as contents of sucrose and reducing sugar in MP were elevated under Cu treatment, while activities of neutral/alkaline invertase and sucrose synthase showed no significant differences between two populations. The results indicate important roles of acid invertase in governing root growth under Cu stress.
Asunto(s)
Cobre/metabolismo , Rumex/crecimiento & desarrollo , Sacarosa/metabolismo , Glucosiltransferasas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , Rumex/enzimología , Estrés Fisiológico , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismoRESUMEN
Recent evidence indicates that during copper (Cu) stress, the roots of metallicolous plants manifest a higher activity of acid invertase enzymes, which are rate-limiting in sucrose catabolism, than non-metallicolous plants. To test whether the higher activity of acid invertases is the result of higher expression of acid invertase genes, we isolated partial cDNAs for acid invertases from two populations of Rumex japonicus (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, and designed primers to measure changes in transcript levels during Cu stress. We also determined the growth of the plants' roots, Cu accumulation, and acid invertase activities. The seedlings of R. japonicus were exposed to control or 20 µM Cu(2+) for 6d under hydroponic conditions. The transcript level and enzyme activity of acid invertases in metallicolous plants were both significantly higher than those in non-metallicolous plants when treated with 20 µM. Under Cu stress, the root length and root biomass of metallicolous plants were also significantly higher than those of non-metallicolous plants. The results suggested that under Cu stress, the expression of acid invertase genes in metallicolous plants of R. japonicus differed from those in non-metallicolous plants. Furthermore, the higher acid invertase activities of metallicolous plants under Cu stress could be due in part to elevated expression of acid invertase genes.
Asunto(s)
Cobre/toxicidad , Raíces de Plantas/metabolismo , Rumex/enzimología , Contaminantes del Suelo/toxicidad , beta-Fructofuranosidasa/genética , Adaptación Fisiológica , Secuencia de Aminoácidos , Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Rumex/efectos de los fármacos , Rumex/fisiología , Estrés Fisiológico , beta-Fructofuranosidasa/metabolismoRESUMEN
The responses of phenology and reproductive traits to copper stress in two populations of Rumex dentatus were comparatively studied with pot culture experiments. Seeds used for the experiments were, respectively, collected from metalliferous and normal soils. It was found that the responses of phenology and reproductive traits to Cu treatment between the two populations were significantly different. Compared to the non-metallicolous population, the metallicolous population of R. dentatus had a short life cycle, large reproductive effort, and high fertility under Cu stress. In addition, the reproductive effort in metallicolous population of R. dentatus was maintained at the expense of a curtailment of vegetative development. The results suggested that change in phenological traits and more resources allocation to reproduction might play an important role in the adaptation of metallicolous population of R. dentatus to the Cu-enriched mine soils.