Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 102-109, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650148

RESUMEN

Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis. The tumour necrosis factor receptor superfamily member 6 (TNFRSF6) gene encodes the Fas protein, and it participates in apoptosis induced in different cell types. This study aimed to explore TNFRSF6 function in SAE. The SAE mouse model was established by intraperitoneal injection of LPS in TNFRSF6-/- mice and C57BL/6J mice. Microglia were treated with LPS to establish the cell model. The learning, memory and cognitive functions in mice were tested by behavioral tests. Nissl staining was utilized for determining neuronal injury. Microglial activation was tested by immunofluorescence assay. ELISA was utilized for determining TNF-α, IL-1ß, IL-6, and IL-10 contents. Mitochondrial dysfunction was measured by mitochondrial oxygen consumption, ATP content, ROS production, and JC-1 assay. TNFRSF6 was upregulated in the LPS-induced mouse model and cell model. TNFRSF6 deficiency notably alleviated the impaired learning, memory and cognitive functions in SAE mice. Furthermore, we found that TNFRSF6 deficiency could alleviate neuronal injury, microglial activation, and inflammation in SAE mice. Additionally, mitochondrial dysfunction in the SAE mice was improved by TNFRSF6 depletion. In the LPS-induced microglia, we also proved that TNFRSF6 knockdown reduced inflammatory response inhibited ROS production, and alleviated mitochondrial dysfunction. TNFRSF6 induced mitochondrial dysfunction and microglia activation in the in vivo and in vitro models of SAE.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía , Mitocondrias , Encefalopatía Asociada a la Sepsis , Animales , Masculino , Ratones , Inflamación/patología , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología , Encefalopatía Asociada a la Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/patología
2.
Sci Total Environ ; 851(Pt 2): 158317, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037900

RESUMEN

Metal-organic frameworks (MOFs) are emerging nanomaterials with widespread applications for their superior properties. However, the potential health and environmental risks of MOFs still need further understanding. In this work, we investigated the toxicity of a typical cobalt-based MOF (ZIF-67) with varied primary particle sizes (100, 200, 400, 700 and 1200 nm) to Photobacterium Phosphoreum T3 strain, a kind of luminescent bacteria. The luminescence inhibition rate of all ZIF-67 nanoparticles (NPs) reached 40 % and higher at the concentration of 5 mg/L, exhibiting strong toxicity. Combined cellular assays and gene expression analysis confirmed that the general bioactivity inhibition and oxidative damage were induced mainly by ZIF-67 NPs, rather than Co2+ released from the ZIF-67 NPs. Additionally, the toxicity of ZIF-67 NPs demonstrated an evident size-dependent effect. For ZIF-67 smaller than 400 nm, the toxicity increased with the particle size decreased, while the trend was not significant when the particle size was larger than 400 nm. A potential explanation for this phenomenon is the smaller NPs (100 and 200 nm) may enter the cytoplasm, accumulating in the cytoplasm and causing more severe toxicity. Furthermore, Co2+ released from the ZIF-67 NPs was not the primary contributor to the toxic effect of ZIF-67 NPs which was verified by the toxicity results and the variation of toxicity-related indicators. These findings provided insight into the better design and safer use of MOFs, and it also implied the potential environmental risk of the MOF's cannot be ignored, especially for the bioapplication.


Asunto(s)
Cobalto , Estructuras Metalorgánicas , Cobalto/toxicidad , Photobacterium , Estrés Oxidativo
3.
Nat Commun ; 13(1): 4523, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927249

RESUMEN

Formation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride (hBN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making hBN possibly the most scaling resistant material reported to date. Experimental and simulation results reveal that this ultrahigh scaling-resistance is attributed to the combination of hBN's atomically-smooth surface, in-plane atomic energy corrugation due to the polar boron-nitrogen bond, and the close match between its interatomic spacing and the size of water molecules. The latter two properties lead to strong polar interactions with water and hence the formation of a dense hydration layer, which strongly hinders the approach of mineral ions and crystals, decreasing both surface heterogeneous nucleation and crystal attachment.

4.
Environ Sci Technol ; 56(12): 7484-7511, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35666637

RESUMEN

Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods. In this Critical Review, we first describe nucleation mechanisms and crystal growth theories, which are fundamental to understanding inorganic scale formation during membrane desalination. We, then, discuss the key mechanisms and factors that govern membrane scaling, including membrane properties, such as surface roughness, charge, and functionality, as well as feedwater characteristics, such as pH, temperature, and ionic strength. We follow with a critical review of current characterization techniques for both homogeneous and heterogeneous nucleation, focusing on the strengths and limitations of each technique to elucidate scale-inducing mechanisms, observe actual crystal growth, and analyze the outcome of scaling behaviors of desalination membranes. We conclude with an outlook on research needs and future research directions to provide guidelines for scale mitigation in water treatment and desalination.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Carbonato de Calcio , Sulfato de Calcio , Dióxido de Silicio/química , Purificación del Agua/métodos
5.
Water Res ; 216: 118351, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390703

RESUMEN

Nitrate (NO3-) is a ubiquitous contaminant in water and wastewater. Conventional treatment processes such as adsorption and membrane separation suffer from low selectivity for NO3- removal, causing high energy consumption and adsorbents usage. In this study, we demonstrate selective removal of NO3- in an electrosorption process by a thin, porous carbonized eggshell membrane (CESM) derived from eggshell bio-waste. The CESM possesses an interconnected hierarchical pore structure with pore size ranging from a few nanometers to tens of micrometers. When utilized as the anode in an electrosorption process, the CESM exhibited strong selectivity for NO3- over Cl-, SO42-, and H2PO4-. Adsorption of NO3- by the CESM reached 2.4 × 10-3 mmol/m2, almost two orders of magnitude higher than that by activated carbon (AC). More importantly, the CESM achieved NO3-/Cl- selectivity of 7.79 at an applied voltage of 1.2 V, the highest NO3-/Cl- selectivity reported to date. The high selectivity led to a five-fold reduction in energy consumption for NO3- removal compared to electrosorption using conventional AC electrodes. Density function theory calculation suggests that the high NO3- selectivity of CESM is attributed to its rich nitrogen-containing functional groups, which possess higher binding energy with NO3- compared to Cl-, SO42-, and H2PO4-. These results suggest that nitrogen-rich biomaterials are good precursors for NO3- selective electrodes; similar chemistry can also be used in other materials to achieve NO3- selectivity.


Asunto(s)
Nitratos , Purificación del Agua , Animales , Carbón Orgánico , Cáscara de Huevo , Electrodos , Nitratos/química , Nitrógeno , Óxidos de Nitrógeno , Porosidad , Aguas Residuales , Agua , Purificación del Agua/métodos
6.
J Orthop Surg Res ; 17(1): 189, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346277

RESUMEN

BACKGROUND: Pubic symphysis diastasis (PSD) hinders the connection between bilateral ischia and pubic bones, resulting in instability of the anterior pelvic ring. PSD exceeding 25 mm is considered disruptions of the symphyseal and unilateral/bilateral anterior sacroiliac ligaments and require surgical intervention. The correct choice of fixation devices is of great significance to treat PSD. This study aimed to evaluate the construct stability and implant performance of seven fixation methods to treat PSD using finite element analysis. METHODS: The intact skeleton-ligament pelvic models were set as the control group. PSD models were simulated by removing relevant ligaments. To enhance the stability of the posterior pelvic ring, a cannulated screw was applied in the PSD models. Next, seven anterior fixation devices were installed on the PSD models according to standard surgical procedures, including single plates (single-Plate group), single plates with trans-symphyseal cross-screws (single-crsPlate group), dual plates (dual-Plate group), single cannulated screws, dual crossed cannulated screws (dual-canScrew group), subcutaneous plates (sub-Plate group), and subcutaneous pedicle screw-rod devices (sub-PedRod group). Compression and torsion were applied to all models. The construct stiffness, symphyseal relative micromotions, and von Mises stress performance were recorded and analyzed. RESULTS: The construct stiffness decreased dramatically under PSD conditions. The dual-canScrew (154.3 ± 9.3 N/mm), sub-Plate (147.1 ± 10.2 N/mm), and sub-PedRod (133.8 ± 8.0 N/mm) groups showed better ability to restore intact stability than the other groups (p < 0.05). Regarding regional stability, only single-plate fixation provided unexpected regional stability with a diastasis of 2.1 ± 0.2 mm (p < 0.001) under a compressive load. Under a rotational load, the single-crsPlate group provided better regional angular stability (0.31° ± 0.03°, p < 0.001). Stress concentrations occurred in the single-Plate, sub-Plate, and sub-PedRod groups. The maximum von Mises stress was observed in the single-plate group (1112.1 ± 112.7 MPa, p < 0.001). CONCLUSION: The dual-canScrew fixation device offers ideal outcomes to maintain stability and prevent failure biomechanically. The single-crsPlate and dual-Plate methods effectively improved single-Plate device to enhance regional stability and disperse stresses. The subcutaneous fixation devices provided both anterior pelvic ring stability and pubic symphysis strength.


Asunto(s)
Diástasis de la Sínfisis Pubiana , Sínfisis Pubiana , Fenómenos Biomecánicos , Placas Óseas , Tornillos Óseos , Análisis de Elementos Finitos , Fijación Interna de Fracturas/métodos , Humanos , Sínfisis Pubiana/cirugía , Diástasis de la Sínfisis Pubiana/cirugía
7.
Environ Sci Technol ; 54(23): 15395-15404, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064949

RESUMEN

Scale formation is an important challenge in water and wastewater treatment systems. However, due to the complex nature of membrane surfaces, the effects of specific membrane surface characteristics on scale formation are poorly understood. In this study, the independent effect of surface hydrophobicity on gypsum (CaSO4·2H2O) scale formation via surface-induced nucleation and bulk homogeneous nucleation was investigated using quartz crystal microbalance with dissipation (QCM-D) on self-assembled monolayers (SAMs) terminated with -OH, -CH3, and -CF3 functional groups. Results show that higher surface hydrophobicity enhances both surface-induced nucleation of gypsum and attachment of gypsum crystals formed from homogeneous nucleation in the bulk solution. The enhanced surface-induced nucleation is attributed to the lower nucleation energy barrier on a hydrophobic surface, while the increased gypsum crystal attachment results from the favorable hydrophobic interactions between gypsum and more hydrophobic surfaces. Contrary to previous findings, the role of Ca2+ adsorption in surface-induced nucleation was found to be relatively small and similar on the different SAMs. Therefore, increasing material hydrophilicity is a potential approach to reduce gypsum scaling.


Asunto(s)
Sulfato de Calcio , Purificación del Agua , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
8.
Environ Sci Technol ; 54(20): 13322-13332, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32966059

RESUMEN

Hexavalent chromium Cr(VI) is a highly toxic groundwater contaminant. In this study, we demonstrate a selective electrochemical process tailored for removal of Cr(VI) using a hybrid MOF@rGO nanomaterial synthesized by in situ growth of a nanocrystalline, mixed ligand octahedral metal-organic framework with cobalt metal centers, [Co2(btec)(bipy)(DMF)2]n (Co-MOF), on the surface of reduced graphene oxide (rGO). The rGO provides the electric conductivity necessary for an electrode, while the Co-MOF endows highly selective adsorption sites for CrO42-. When used as an anode in the treatment cycles, the MOF@rGO electrode exhibits strong selectivity for adsorption of CrO42- over competing anions including Cl-, SO42-, and As(III) and achieves charge efficiency (CE) >100% due to the strong physisorption of CrO42- by Co-MOF; both electro- and physisorption capacities are regenerated with the reversal of the applied voltage, when highly toxic Cr(VI) is reduced to less toxic reduced Cr species and subsequently released into brine. This approach allows easy regeneration of the nonconducting Co-MOF without any chemical addition while simultaneously transforming Cr(VI), inspiring a novel electrochemical method for highly selective degradation of toxic contaminants using tailor-designed electrodes with high affinity adsorbents.


Asunto(s)
Estructuras Metalorgánicas , Nanoestructuras , Contaminantes Químicos del Agua , Cromatos , Cromo , Grafito , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA