Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 151(Pt A): 106306, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403357

RESUMEN

The outbreak of new coronary pneumonia has brought severe health risks to the world. Detection of COVID-19 based on the UNet network has attracted widespread attention in medical image segmentation. However, the traditional UNet model is challenging to capture the long-range dependence of the image due to the limitations of the convolution kernel with a fixed receptive field. The Transformer Encoder overcomes the long-range dependence problem. However, the Transformer-based segmentation approach cannot effectively capture the fine-grained details. We propose a transformer with a double decoder UNet for COVID-19 lesions segmentation to address this challenge, TDD-UNet. We introduce the multi-head self-attention of the Transformer to the UNet encoding layer to extract global context information. The dual decoder structure is used to improve the result of foreground segmentation by predicting the background and applying deep supervision. We performed quantitative analysis and comparison for our proposed method on four public datasets with different modalities, including CT and CXR, to demonstrate its effectiveness and generality in segmenting COVID-19 lesions. We also performed ablation studies on the COVID-19-CT-505 dataset to verify the effectiveness of the key components of our proposed model. The proposed TDD-UNet also achieves higher Dice and Jaccard mean scores and the lowest standard deviation compared to competitors. Our proposed method achieves better segmentation results than other state-of-the-art methods.


Asunto(s)
COVID-19 , Equipos de Comunicación para Personas con Discapacidad , Humanos , COVID-19/diagnóstico por imagen , Algoritmos , Corazón
2.
J Med Syst ; 42(5): 90, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29616341

RESUMEN

Privacy preserving data mining for medical information is an important issue to guarantee confidentiality of integrated multiple data sets. In this paper, we propose a secured scheme to estimate related risk of cancers accurately and effectively in a privacy-preserving way. We study models to configure the appropriate set of attributes to reduce risk of identity of an individual from being determined. We examine the proposed privacy preserving protocol for encrypted hypothesis test, using actual cohort data supplied by National Cancer Center.


Asunto(s)
Confidencialidad , Minería de Datos/métodos , Ejercicio Físico , Neoplasias/epidemiología , Distribución por Edad , Algoritmos , Seguridad Computacional , Humanos , Proyectos de Investigación , Medición de Riesgo , Factores de Riesgo , Distribución por Sexo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...