Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715092

RESUMEN

Aluminum chloride is an inorganic polymeric coagulant commonly found in daily life and various materials. Although male reproductive toxicity has been associated with AlCl3 exposure, the underlying mechanism remains unclear. This study aimed to examine the impact of AlCl3 exposure on mitophagy and mitochondrial apoptosis in testicular tissue and mouse spermatocytes. Reactive oxygen species (ROS) and ATP levels were measured in GC-2spd after AlCl3 exposure using a multifunctional enzyme labeler. The changes in mitochondrial membrane potential (MMP) and TUNEL were observed through confocal laser microscopy, and the expression of proteins associated with mitophagy and apoptosis was analyzed using Western blot. Our results demonstrated that AlCl3 exposure disrupted mitophagy and increased apoptosis-related protein expression in testicular tissues. In the in vitro experiments, AlCl3 exposure induced ROS production, suppressed cell viability and ATP production, and caused a decrease in MMP, leading to mitophagy and cell apoptosis in GC-2spd cells. Intervention with N-acetylcysteine (NAC) reduced ROS production and partially restored mitochondrial function, thereby reversing the resulting mitophagy and cell apoptosis. Our findings provide evidence that ROS-mediated mitophagy and cell apoptosis play a crucial role in the toxicity of AlCl3 exposure in GC-2spd. These results contribute to the understanding of male reproductive toxicity caused by AlCl3 exposure and offer a foundation for future research in this area.

2.
Apoptosis ; 22(11): 1404-1418, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28864870

RESUMEN

The pro-inflammatory cytokine interleukin 6 (IL-6), via activating its downstream JAK/STAT3 and Ras/ERK signaling pathways, is involved in cell growth, proliferation and anti-apoptotic activities in various malignancies. To screen inhibitors of IL-6 signaling, we constructed a STAT3 and ERK dual-pathway responsive luciferase reporter vector (Co.RE). Among several candidates, the natural compound 20(S)-25-methoxyl-dammarane-3ß, 12ß, 20-triol (25-OCH3-PPD, GS25) was identified to clearly inhibit the luciferase activity of Co.RE. GS25 was confirmed to indeed inhibit activation of both STAT3 and ERK pathways and expression of downstream target genes of IL-6, and to predominantly decrease the viability of HepG2 cells via induction of cell cycle arrest and apoptosis. Interestingly, GS25 showed preferential inhibition of HepG2 cell viability relative to normal liver L02 cells. Further investigation showed that GS25 could not induce apoptosis and block activation of STAT3 and ERK pathways in L02 cells as efficiently as in HepG2 cells, which may result in differential effects of GS25 on malignant and normal liver cells. In addition, GS25 was found to potently suppress the expression of endogenous STAT3 at a higher concentration and dramatically induce p38 phosphorylation in HepG2 cells, which could mediate its anti-cancer effects. Finally, we demonstrated that GS25 also inhibited tumor growth in HepG2 xenograft mice. Taken together, these findings indicate that GS25 elicits its anti-cancer effects on HepG2 cells through multiple mechanisms and has the potential to be used as an inhibitor of IL-6 signaling. Thus, GS25 may be developed as a treatment for hepatocarcinoma with low toxicity on normal liver tissues as well as other inflammation-associated diseases.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Regulación Neoplásica de la Expresión Génica , Ginsenósidos/farmacología , Hepatoblastoma/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Animales , Antineoplásicos Fitogénicos/síntesis química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Femenino , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ginsenósidos/química , Células Hep G2 , Hepatoblastoma/genética , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Luciferasas/genética , Luciferasas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Desnudos , Factor de Transcripción STAT3/agonistas , Factor de Transcripción STAT3/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
BMC Pharmacol Toxicol ; 17(1): 32, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27443303

RESUMEN

BACKGROUND: Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of cancer, diabetes and other human diseases. HDAC inhibitors, as a new class of potential therapeutic agents, have attracted a great deal of interest for both research and clinical applications. Increasing efforts have been focused on the discovery of HDAC inhibitors and some HDAC inhibitors have been approved for use in cancer therapy. However, most HDAC inhibitors, including the clinically approved agents, do not selectively inhibit the deacetylase activity of class I and II HDAC isforms, and many suffer from metabolic instability. This study aims to identify new HDAC inhibitors by using a high-throughput virtual screening approach. METHODS: An integration of in silico virtual screening and in vitro experimental validation was used to identify novel HDAC inhibitors from a chemical database. RESULTS: A virtual screening workflow for HDAC inhibitors were created by integrating ligand- and receptor- based virtual screening methods. Using the virtual screening workflow, 22 hit compounds were selected and further tested via in vitro assays. Enzyme inhibition assays showed that three of the 22 compounds had HDAC inhibitory properties. Among these three compounds, ZINC12555961 significantly inhibited HDAC activity. Further in vitro experiments indicated that ZINC12555961 can selectively inhibit proliferation and promote apoptosis of cancer cells. CONCLUSIONS: In summary, our study presents three new and potent HDAC inhibitors and one of these HDAC inhibitors shows anti-proliferative and apoptosis-inducing activity against various cancer cell lines. These results suggest that the developed virtual screening workflow can provide a useful source of information for the screening and validation of new HDAC inhibitors. The new-found HDAC inhibitors are worthy to further and more comprehensive investigations.


Asunto(s)
Diseño de Fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Interfaz Usuario-Computador , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Células Hep G2 , Humanos , Reproducibilidad de los Resultados
4.
Mol Med Rep ; 13(4): 3581-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26936285

RESUMEN

Increasing evidence indicates that the hepatitis B virus (HBV) replicates in peripheral blood mononuclear cells (PBMCs), but at a low level. The present study aimed to establish a reliable and sensitive method that effectively detects HBV viral products for monitoring antiviral therapy, organ transplantation screening, and diagnosing occult HBV infection. In the present study, PBMCs (obtained from six healthy volunteers) were inoculated with HBV, and cultured with phytohemagglutinin (PHA) and interleukin­2 (IL­2) to stimulate cell proliferation. PBMCs were harvested, and quantitative detection of HBV DNA in cell suspension and intracellular hepatitis B surface antigen (HBsAg) was conducted on days 0, 1, 6 and 12, respectively. In situ hybridization, immunohistochemistry and reverse transcription­polymerase chain reaction (RT­PCR) were performed to analyze the HBV infection. The results demonstrated that HBV DNA increased concurrently with proliferation of PBMCs isolated from three of six healthy volunteers, and the mean number of PBMCs on day 12 was 13.61 times higher than the initially seeded cell number (P<0.01). The mean copies of HBV DNA at day 12 were 2.98 times higher compared with initial levels (P<0.05). Furthermore, intracellular HBsAg levels increased concurrently with proliferation of PBMCs in one group of cultured PBMCs, which was accompanied by increased HBV DNA levels. In addition, HBV nucleic acids were detected in PBMCs using in situ hybridization. Intracellular HBsAg was observed in PBMCs and HBV RNA was also detected by RT­PCR. The present study demonstrated that HBV replicates in proliferating PBMCs, which were induced by PHA and IL­2. This method offers a novel investigative tool to detect HBV infection in PBMCs and to monitor the course of HBV infection.


Asunto(s)
ADN Viral/análisis , Virus de la Hepatitis B/metabolismo , Adulto , Femenino , Antígenos de Superficie de la Hepatitis B/metabolismo , Humanos , Hibridación Fluorescente in Situ , Interleucina-2/farmacología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/virología , Masculino , Microscopía Fluorescente , Fitohemaglutininas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Replicación Viral/efectos de los fármacos , Adulto Joven
5.
Biochem Pharmacol ; 105: 66-79, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26850986

RESUMEN

Psoriasis is a multifactorial skin disease that inconveniences many patients. Considering the side effects and drug resistance of the current therapy, it is urgent to discover more effective and safer anti-psoriatic drugs. In the present study, we screened over 250 traditional Chinese medicine compounds for their ability to inhibit the cell viability of cultured human HaCaT keratinocytes, a psoriasis-relevant in vitro model, and found that periplogenin was highly effective. Mechanistic studies revealed that apoptosis and autophagy were not induced by periplogenin in HaCaT cells. However, periplogenin caused PI to permeate into cells, increased lactate LDH release and rapidly increased the number of necrotic cells. Additionally, the typical characteristics of necrosis were observed in the periplogenin-treated HaCaT cells. Notably, the necroptosis inhibitor Nec-1 and NSA were able to rescue the cells from necrotic cell death, supporting that necroptosis was involved in periplogenin-induced cell death. Furthermore, the ROS levels were elevated in the periplogenin-treated cells, NAC (an antioxidant) and Nec-1 could inhibit the ROS levels, and NAC could attenuate necroptotic cell death, indicating that the periplogenin-induced necroptotic cell death was mediated by oxidative stress. More importantly, in the murine models of TPA-induced epidermal hyperplasia and IMQ-induced skin inflammation, topical administration of periplogenin ameliorated skin lesions and inflammation. In sum, our results indicate, for the first time, that periplogenin is a naturally occurring compound with potent anti-psoriatic effects in vitro and in vivo, making it a promising candidate for future drug research.


Asunto(s)
Aminoquinolinas/toxicidad , Digitoxigenina/análogos & derivados , Modelos Animales de Enfermedad , Estrés Oxidativo/fisiología , Psoriasis/metabolismo , Acetato de Tetradecanoilforbol/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Digitoxigenina/farmacología , Digitoxigenina/uso terapéutico , Femenino , Humanos , Imiquimod , Ratones , Ratones Endogámicos BALB C , Necrosis/inducido químicamente , Necrosis/tratamiento farmacológico , Necrosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico
6.
Oxid Med Cell Longev ; 2016: 4941623, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26682007

RESUMEN

Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.


Asunto(s)
Antraquinonas/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proteína Forkhead Box O3 , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología
7.
Comput Intell Neurosci ; 2015: 387409, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866502

RESUMEN

Somite formation in the early stage of vertebrate embryonic development is controlled by a complicated gene network named segmentation clock, which is defined by the periodic expression of genes related to the Notch, Wnt, and the fibroblast growth factor (FGF) pathways. Although in recent years some findings about crosstalk among the Notch, Wnt, and FGF pathways in somitogenesis have been reported, the investigation of their crosstalk mechanisms from a systematic point of view is still lacking. In this study, a more comprehensive mathematical model was proposed to simulate the dynamics of the Notch, Wnt, and FGF pathways in the segmentation clock. Simulations and bifurcation analyses of this model suggested that the concentration gradients of both Wnt, and FGF signals along the presomitic mesoderm (PSM) are corresponding to the whole process from start to stop of the segmentation clock. A number of highly sensitive parameters to the segmentation clock's oscillatory pattern were identified. By further bifurcation analyses for these sensitive parameters, and several complementary mechanisms in respect of the maintenance of the stable oscillation of the segmentation clock were revealed.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Modelos Teóricos , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Somitos/metabolismo , Proteínas Wnt/metabolismo , Relojes Biológicos/fisiología , Mesodermo , Modelos Biológicos
8.
Comput Math Methods Med ; 2014: 867289, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25371703

RESUMEN

SAHA (suberoylanilide hydroxamic acid or vorinostat) is the first nonselective histone deacetylase (HDAC) inhibitor approved by the US Food and Drug Administration (FDA). SAHA affects histone acetylation in chromatin and a variety of nonhistone substrates, thus influencing many cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although the mechanism is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the existing research.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Neoplasias/patología , Algoritmos , Apoptosis , Ciclo Celular , Análisis por Conglomerados , Daño del ADN , Humanos , Neoplasias/tratamiento farmacológico , Programas Informáticos , Factores de Tiempo , Vorinostat
9.
J Asian Nat Prod Res ; 16(8): 819-24, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25176221

RESUMEN

Three new compounds, 3,6-dihydroxy-4,5-dimethoxy-1,8-naphalic anhydride (1), 3,4,5,6-tetrahydroxy-1,8-naphalic anhydride (2), and methyl (7E,9E)-6,11-dioxononadeca-7,9-dienoate (3), were isolated from the stem bark of Juglans mandshurica. Their structures were elucidated on the basis of spectroscopic evidence, including 1D and 2D NMR, HR-TOF-MS, and by comparison with the literature data.


Asunto(s)
Medicamentos Herbarios Chinos/aislamiento & purificación , Ácidos Grasos Insaturados/aislamiento & purificación , Juglans/química , Fenalenos/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Ácidos Grasos Insaturados/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fenalenos/química , Corteza de la Planta/química , Tallos de la Planta/química
10.
Cell Signal ; 26(10): 2266-75, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049081

RESUMEN

Testes-specific protease 50 (TSP50) is a novelly identified pro-oncogene and it shares a similar enzymatic structure with many serine proteases. Our previous results suggested that TSP50 could promote tumorigenesis through degradation of IκBα protein and activating NF-κB signaling, and the threonine mutation in its catalytic triad could depress TSP50-mediated cell proliferation. However, whether the two other residues in the catalytic triad of TSP50 play a role in maintaining protease activity and tumorigenesis, and the mechanisms involved in this process remain unclear. Here, we constructed and characterized three catalytic triad mutants of TSP50 and found that all the mutants could significantly depress TSP50-induced cell proliferation and colony formation in vitro and tumor formation in vivo, and the aspartic acid at position 206 in the catalytic triad played a more crucial role than threonine and histidine in this process. Mechanistic studies revealed that the mutants in the catalytic triad abolished the enzyme activity of TSP50, but did not change the cellular localization. Furthermore, our data indicated that all the three mutants suppressed activation of NF-κB signal by preventing the interaction between TSP50 and the NF-κB:IκBα complex. Most importantly, we demonstrated that TSP50 could interact with IκBα protein and cleave it directly as a new protease in vitro.


Asunto(s)
Serina Endopeptidasas/metabolismo , Animales , Células CHO , Carcinogénesis , Proliferación Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas I-kappa B/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Unión Proteica , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Transducción de Señal
11.
Asian Pac J Cancer Prev ; 15(12): 4897-902, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24998560

RESUMEN

PURPOSE: To investigate the anticancer effects and underlying mechanisms of parthenolide on HepG2 human hepatocellular carcinoma cells. MATERIALS AND METHODS: Cell viability was assessed by MTT assay and cell apoptosis through DAPI, TUNEL staining and Western blotting. Monodansylcadaverin(MDC) and AO staining were used to detect cell autophagy. Cell proliferation was assessed by Ki67 immunofluorescence staining. RESULTS: Parthenolide induced growth inhibition in HepG2 cells. DAPI and TUNEL staining showed that parthenolide could increase the number of apoptotic nuclei, while reducing the expression of the anti-apoptotic protein Bcl-2 and elevating the expression of related proteins, like p53, Bax, cleaved caspase9 and cleaved caspase3. Parthenolide could induce autophagy in HepG2 cells and inhibited the expression of proliferation-related gene, Ki-67. CONCLUSIONS: Parthenolide can exert anti-cancer effects by inducing cell apoptosis, activating autophagy and inhibiting cell proliferation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Sesquiterpenos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Carcinoma Hepatocelular/metabolismo , Técnica del Anticuerpo Fluorescente , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
12.
Mol Med Rep ; 8(4): 967-72, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23970102

RESUMEN

Alantolactone, a methanol extract of Inula helenium, possesses anticancer properties in a number of cancer cell lines. However, its anticancer effect on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In the present study, the effects of alantolactone on cell viability and apoptosis in RKO human colon cancer cells were investigated. Alantolactone treatment of RKO cells was found to result in dose­dependent inhibition of cell viability and induction of apoptosis, accompanied with the accumulation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential. In addition, these effects were blocked with N­acetylcysteine, a specific ROS inhibitor. Western blotting indicated that exposure of RKO cells to alantolactone is associated with the downregulation of Bcl­2, induction of Bax and activation of caspase­3 and ­9. These results indicated that a ROS­mediated mitochondria­dependent pathway is involved in alantolactone­induced apoptosis. From these observations, it was hypothesized that alantolactone may be used for the treatment of human colon cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Lactonas/farmacología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos de Eudesmano/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
13.
Theor Biol Med Model ; 10: 27, 2013 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-23602012

RESUMEN

BACKGROUND: Somitogenesis is a fundamental characteristic feature of development in various animal embryos. Molecular evidence has proved that the Notch and Wnt pathways play important roles in regulating the process of somitogenesis and there is crosstalk between these two pathways. However, it is difficult to investigate the detailed mechanism of these two pathways and their interactions in somitogenesis through biological experiments. In recent years some mathematical models have been proposed for the purpose of studying the dynamics of the Notch and Wnt pathways in somitogenesis. Unfortunately, only a few of these models have explored the interactions between them. RESULTS: In this study, we have proposed three mathematical models for the Notch signalling pathway alone, the Wnt signalling pathway alone, and the interactions between them. These models can simulate the dynamics of the Notch and Wnt pathways in somitogenesis, and are capable of reproducing the observations derived from wet experiments. They were used to investigate the molecular mechanisms of the Notch and Wnt pathways and their crosstalk in somitogenesis through the model simulations. CONCLUSIONS: Three mathematical models are proposed for the Notch and Wnt pathways and their interaction during somitogenesis. The simulations demonstrate that the extracellular Notch and Wnt signals are essential for the oscillating expressions of both Notch and Wnt target genes. Moreover, the internal negative feedback loops and the three levels of crosstalk between these pathways play important but distinct roles in maintaining the system oscillation. In addition, the results of the parameter sensitivity analysis of the models indicate that the Notch pathway is more sensitive to perturbation in somitogenesis.


Asunto(s)
Embrión no Mamífero/metabolismo , Modelos Teóricos , Receptores Notch/metabolismo , Transducción de Señal , Somitos , Proteínas Wnt/metabolismo , Animales
14.
BMC Bioinformatics ; 14: 41, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23384097

RESUMEN

BACKGROUND: Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) are multifunctional cytokines that regulate immune responses, cell proliferation, and tumour development and progression, which frequently have functionally opposing roles. The cellular responses to both cytokines are activated via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. During the past 10 years, the crosstalk mechanism between the IFN-gamma and IL-6 pathways has been studied widely and several biological hypotheses have been proposed, but the kinetics and detailed crosstalk mechanism remain unclear. RESULTS: Using established mathematical models and new experimental observations of the crosstalk between the IFN-gamma and IL-6 pathways, we constructed a new crosstalk model that considers three possible crosstalk levels: (1) the competition between STAT1 and STAT3 for common receptor docking sites; (2) the mutual negative regulation between SOCS1 and SOCS3; and (3) the negative regulatory effects of the formation of STAT1/3 heterodimers. A number of simulations were tested to explore the consequences of cross-regulation between the two pathways. The simulation results agreed well with the experimental data, thereby demonstrating the effectiveness and correctness of the model. CONCLUSION: In this study, we developed a crosstalk model of the IFN-gamma and IL-6 pathways to theoretically investigate their cross-regulation mechanism. The simulation experiments showed the importance of the three crosstalk levels between the two pathways. In particular, the unbalanced competition between STAT1 and STAT3 for IFNR and gp130 led to preferential activation of IFN-gamma and IL-6, while at the same time the formation of STAT1/3 heterodimers enhanced preferential signal transduction by sequestering a fraction of the activated STATs. The model provided a good explanation of the experimental observations and provided insights that may inform further research to facilitate a better understanding of the cross-regulation mechanism between the two pathways.


Asunto(s)
Interferón gamma/farmacología , Interleucina-6/farmacología , Modelos Biológicos , Quinasas Janus/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
15.
J Pharm Biomed Anal ; 76: 44-8, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23291442

RESUMEN

A reversed phase high performance liquid chromatography method coupled with a diode array detector (HPLC-DAD) was developed for the first time for the simultaneous determination of 9 flavonoids in Senecio cannabifolius, a traditional Chinese medicinal herb. Agilent Zorbax SB-C18 column was used at room temperature and the mobile phase was a mixture of acetonitrile and 0.5% formic acid (v/v) in water in the gradient elution mode at a flow-rate of 1.0mlmin(-1), detected at 360nm. Validation of this method was performed to verify the linearity, precision, limits of detection and quantification, intra- and inter-day variabilities, reproducibility and recovery. The calibration curves showed good linearities (R(2)>0.9995) within the test ranges. The relative standard deviation (RSD) of the method was less than 3.0% for intra- and inter-day assays. The samples were stable for at least 96h, and the average recoveries were between 90.6% and 102.5%. High sensitivity was demonstrated with detection limits of 0.028-0.085µg/ml for flavonoids. The newly established HPLC method represents a powerful technique for the quality assurance of S. cannabifolius.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Senecio/química , Calibración , Medicamentos Herbarios Chinos/análisis , Flavonoides/aislamiento & purificación , Límite de Detección , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
J Asian Nat Prod Res ; 15(2): 203-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23323802

RESUMEN

A new 2,5-diketopiperazine, (R)-2-(2-(furan-2-yl)-oxoethyl)-octahydropyrrolo[1,2-a]pyrazine-1,4-dione, and seven known compounds were isolated from the ethyl acetate extract of liquid fermentation broth of Armillaria mellea. The structures of the isolated compounds were established from NMR and HR-MS data. The absolute configuration of the new compound was established by comparing the experimental electronic circular dichroism (ECD) spectrum with the calculated ECD data.


Asunto(s)
Armillaria/química , Dicetopiperazinas/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Dicroismo Circular , Dicetopiperazinas/química , Medicamentos Herbarios Chinos/química , Fermentación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
17.
PLoS One ; 7(12): e51141, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226565

RESUMEN

Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes/genética , Simulación por Computador , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética
18.
Int J Mol Sci ; 13(12): 17185-209, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23242155

RESUMEN

Insulin-like growth factor 1 receptor (IGF1R) is an attractive drug target for cancer therapy and research on IGF1R inhibitors has had success in clinical trials. A particular challenge in the development of specific IGF1R inhibitors is interference from insulin receptor (IR), which has a nearly identical sequence. A few potent inhibitors that are selective for IGF1R have been discovered experimentally with the aid of computational methods. However, studies on the rapid identification of IGF1R-selective inhibitors using virtual screening and confidence-level inspections of ligands that show different interactions with IGF1R and IR in docking analysis are rare. In this study, we established virtual screening and binding-mode prediction workflows based on benchmark results of IGF1R and several kinase receptors with IGF1R-like structures. We used comprehensive analysis of the known complexes of IGF1R and IR with their binding ligands to screen specific IGF1R inhibitors. Using these workflows, 17 of 139,735 compounds in the NCI (National Cancer Institute) database were identified as potential specific inhibitors of IGF1R. Calculations of the potential of mean force (PMF) with GROMACS were further conducted for three of the identified compounds to assess their binding affinity differences towards IGF1R and IR.


Asunto(s)
Antineoplásicos/química , Bases de Datos de Compuestos Químicos , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Receptores de Somatomedina/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Humanos , National Cancer Institute (U.S.) , Proteínas de Neoplasias/química , Receptor IGF Tipo 1 , Receptores de Somatomedina/química , Estados Unidos
19.
Eur J Pharmacol ; 695(1-3): 27-33, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23000392

RESUMEN

Due to the increasing incidence of cancer, a leading cause of death worldwide, discovery of new therapeutic drugs is urgently needed. By screening for agents with low toxicity that selectively target cancer cells, we found that 6-[(1-naphthylmethyl) sulfanyl]-9H-purine (NMMP), a derivative of 6-mercaptopurine (6-MP), could reduce the viability of five human cancer cell lines. Further study suggested that NMMP inhibition of the proliferation of hepatocellular carcinoma (HepG2) cells was associated with G2/M phase cell cycle arrest, and reduced cyclin-dependent kinase (CDK) 4 and cyclin B1/D1 levels. In addition, NMMP induced cell apoptosis, as determined by TUNEL assay. Immunoblot analysis revealed that the expression of cleaved caspase-9 and caspase-3 as well as the ratio of Bax/Bcl-2 protein increased significantly. Overall, our results suggest that NMMP exerts anti-tumor activities through induction of G2/M phase arrest and mitochondria-dependent cell apoptosis, implicating its potential therapeutic value for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Neoplasias Hepáticas/patología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Mercaptopurina/análogos & derivados , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Mercaptopurina/farmacología
20.
PLoS One ; 7(5): e35030, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574111

RESUMEN

BACKGROUND: Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.


Asunto(s)
Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Treonina , Alelos , Animales , Apoptosis/efectos de los fármacos , Células CHO , Dominio Catalítico , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Células HEK293 , Humanos , Quinasa I-kappa B/metabolismo , Ratones , Modelos Moleculares , FN-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Mutación Puntual , Serina Endopeptidasas/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA