RESUMEN
Rechargeable aqueous zinc-sulfur batteries (AZSBs) are emerging as prominent candidates for next-generation energy storage devices owing to their affordability, non-toxicity, environmental friendliness, non-flammability, and use of earth-abundant electrodes and aqueous electrolytes. However, AZSBs currently face challenges in achieving satisfied electrochemical performance due to slow kinetic reactions and limited stability. Therefore, further research and improvement efforts are crucial for advancing AZSBs technology. In this comprehensive review, it is delved into the primary mechanisms governing AZSBs, assess recent advancements in the field, and analyse pivotal modifications made to electrodes and electrolytes to enhance AZSBs performance. This includes the development of novel host materials for sulfur (S) cathodes, which are capable of supporting higher S loading capacities and the refinement of electrolyte compositions to improve ionic conductivity and stability. Moreover, the potential applications of AZSBs across various energy platforms and evaluate their market viability based on recent scholarly contributions is explored. By doing so, this review provides a visionary outlook on future research directions for AZSBs, driving continuous advancements in stable AZSBs technology and deepening the understanding of their charge-discharge dynamics. The insights presented in this review signify a significant step toward a sustainable energy future powered by renewable sources.
RESUMEN
OBJECTIVE: Gastrointestinal cancers are one of the most frequent cancer types and seriously threaten human life and health. Recent studies attribute the occurrence of gastrointestinal cancers to both genetic and environmental factors, yet the intrinsic etiology remains unclear. Mendelian randomization is a powerful well-established statistical method that is based on genome-wide association study (GWAS) to evaluate the causal relationship between exposures and outcomes. In the present study, we aimed to conduct a systematic review of Mendelian randomization studies investigating any causal risk factors for gastrointestinal cancers. METHODS: We systematically searched Mendelian randomization studies that addressed the associations of genetically predicted exposures with five main gastrointestinal cancers from September 2014 to March 2024, as well as testing the research quality and validity. RESULTS: Our findings suggested robust and consistent causal effects of body mass index (BMI), basal metabolic rate, fatty acids, total cholesterol, total bilirubin, insulin like growth factor-1, eosinophil counts, interleukin 2, alcohol consumption, coffee consumption, apolipoprotein B on colorectal cancer risks, BMI, waist circumference, low-density lipoprotein (LDL), total testosterone, smoking on gastric cancer risks, BMI, fasting insulin, LDL, waist circumference, visceral adipose tissue (VAT), immune cells, type 2 diabetes mellitus (T2DM) on pancreatic cancer risks, waist circumference, smoking, T2DM on esophageal adenocarcinoma risks, and VAT, ferritin, transferrin, alcohol consumption, hepatitis B virus infection, rheumatoid arthritis on liver cancer risks, respectively. CONCLUSION: Larger, well-designed Mendelian randomization studies are practical in determining the causal status of risk factors for diseases.
RESUMEN
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT) has been a powerful strategy to combat bacterial infection. However, the compact cell membranes of pathogenic bacteria, especially drug-resistant bacteria, significantly diminish the efficiency of heat conduction and impede the entrance of reactive oxygen species (ROS) into cells, resulting in unsatisfactory sterilization. Enlightened by the membrane feature of competent bacteria, herein a MXene/CaO2 bio-heterojunction (MC bio-HJ) is elaborated to achieve rapid disinfection and promote infected tissue regeneration through activating competent cell-like antibacterial tactics. The bio-HJ first compels pathogenic bacteria to become a competent cell-like stage through the coordination of Ca2+ and membrane phospholipid, and potentiates the membrane permeability. Assisted by near infrared (NIR) irradiation, the heat and ROS generated from PTT and PDT of bio-HJ easily pass through bacterial membrane and drastically perturb bacterial metabolism, leading to rapid disinfection. More importantly, employing two in vivo infected model of mice, it have corroborated that the MC bio-HJs not only effectively accelerate MRSA-infected cutaneous regeneration, but also considerably boost osseointegration in an infected bone defect after coating on orthopedic implants. As envisaged, this work demonstrates a novel therapeutic tactic with robust antibacterial effect to remedy infected tissue regeneration through activating competent cell-like stage.
RESUMEN
BACKGROUND: Orbicularis oris muscle, the crucial muscle in speaking, facial expression and aesthetics, is considered the driving force for optimal lip repair. Impaired muscle regeneration remains the main culprit for unsatisfactory surgical outcomes. However, there is a lack of study on how different surgical manipulations affect lip muscle regeneration, limiting efforts to seek effective interventions. METHODS: In this study, we established a rat lip surgery model where the orbicularis oris muscle was injured by manipulations including dissection, transection and stretch. The effect of each technique on muscle regeneration was examined by histological analysis of myogenesis and fibrogenesis. The impact of tensile force was further investigated by the in vitro application of mechanical strain on cultured myoblasts. Transcriptome profiling of muscle satellite cells from different surgical groups was performed to figure out the key factors mediating muscle fibrosis, followed by therapeutic intervention to improve muscle regeneration after lip surgeries. RESULTS: Evaluation of lip muscle regeneration till 56 days after injury revealed that the stretch group resulted in the most severe muscle fibrosis (n = 6, fibrotic area 48.9% in the stretch group, P < 0.001, and 25.1% in the dissection group, P < 0.001). There was the lowest number of Pax7-positive nuclei at Days 3 and 7 in the stretch group (n = 6, P < 0.001, P < 0.001), indicating impaired satellite cell expansion. Myogenesis was impaired in both the transection and stretch groups, as evidenced by the delayed peak of centrally nucleated myofibers and embryonic MyHC. Meanwhile, the stretch group had the highest percentage of Pdgfra+ fibro-adipogenic progenitors infiltrated area at Days 3, 7 and 14 (n = 6, P = 0.003, P = 0.006, P = 0.037). Cultured rat lip muscle myoblasts exhibited impaired myotube formation and fusion capacity when exposed to a high magnitude (ε = 2688 µ strain) of mechanical strain (n = 3, P = 0.014, P = 0.023). RNA-seq analysis of satellite cells isolated from different surgical groups demonstrated that interleukin-10 was the key regulator in muscle fibrosis. Administration of recombinant human Wnt7a, which can inhibit the expression of interleukin-10 in cultured satellite cells (n = 3, P = 0.041), exerted an ameliorating effect on orbicularis oris muscle fibrosis after stretching injury in surgical lip repair. CONCLUSIONS: Tensile force proved to be the most detrimental manoeuvre for post-operative lip muscle regeneration, despite its critical role in correcting lip and nose deformities. Adjunctive biotherapies to regulate the interleukin-10-mediated inflammatory process could facilitate lip muscle regeneration under conditions of high surgical tensile force.
RESUMEN
Dialdehyde-soluble starch (DAS) and polyethyleneimine (PEI) were used to coat the polyvinylidene fluoride (PVDF) membrane for improving its antifouling and multifunctional properties through a combination of dip-coating and spray-coating techniques. The resulting membrane demonstrated excellent hydrophilicity and underwater oleophobicity due to hydrophilic DAS and PEI on its surface. The membrane achieved an impressive oil removal rate of 99.8 % and a flux 1420.8 ± 26.5 L·m-2·h-1 when it was used for oil-water emulsion separation. The hydration layer formed by the DAS and PEI greatly enhanced the membrane antifouling property, and its flux recovery rate was up to 96.6 % in BSA filtration experiments. The positive charge PEI and the negative charge DAS contributed to high separation efficiency of 99.1 % for the anion dye MO with the membrane D10P20, and high separation efficiency of 88.3 % for the cation dye RhB with the membrane P5D20. In addition, the coating layer was stable due to the cross-linked DAS and PEI. This research contributes greatly to the preparation of antifouling and multifunctional membrane using environmentally friendly material including polysaccharide derivatives and water soluble polymer.
RESUMEN
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Nanopartículas , Obesidad , Simvastatina , Animales , Ratones , Obesidad/tratamiento farmacológico , Obesidad/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas/química , Simvastatina/farmacología , Simvastatina/química , Inflamación/tratamiento farmacológico , Inflamación/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Masculino , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/químicaRESUMEN
OBJECTIVE: The early identification and diagnosis of transplant-associated thrombotic microangiopathy (TA-TMA) are essential yet difficult in patients underwent hematopoietic stem cell transplantation (HSCT). To develop an evidence-based, nurse-leading early warning model for TA-TMA, and implement the healthcare quality review and improvement project. METHODS: This study was a mixed-methods, before-and-after study. The early warning model was developed based on quality evidence from literature search. The healthcare quality review and improvement project mainly included baseline investigation of nurse, improvement action and effectiveness evaluation. The awareness and knowledge of early parameter of TA-TMA among nurses and the prognosis of patients underwent HSCT were compared before and after the improvement. RESULTS: A total of 1 guideline, 1 evidence synthesis, 4 expert consensuses, 10 literature reviews, 2 diagnostic studies, and 9 case series were included in the best evidence. The early warning model including warning period, high-risk characteristics and early manifestation of TA-TMA was developed. The improvement action, including staff training and assessment, suspected TA-TMA identification and patient education, was implemented. The awareness and knowledge rate of early parameter of TA-TMA among nurses significantly improved after improvement action (100% vs. 26.7%, P < 0.001). The incidence of TA-TMA was similar among patients underwent HSCT before and after improvement action (2.8% vs. 1.2%, P = 0.643), while no fall event occurred after improvement action (0 vs. 1.2%, P < 0.001). CONCLUSION: The evidence-based early warning model and healthcare quality improvement project could enhance the awareness and knowledge of TA-TMA among healthcare providers and might improve the prognosis of patients diagnosed with TA-TMA.
RESUMEN
Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.
RESUMEN
The accurate analysis of human dynamic behavior is very important for overcoming the limitations of movement diversity and behavioral adaptability. In this paper, a wearable device-based human dynamic behavior recognition method is proposed. The method collects acceleration and angular velocity data through a six-axis sensor to identify information containing specific behavior characteristics in a time series. A human movement data acquisition platform, the DMP attitude solution algorithm, and the threshold algorithm are used for processing. In this experiment, ten volunteers wore wearable sensors on their bilateral forearms, upper arms, thighs, calves, and waist, and movement data for standing, walking, and jumping were collected in school corridors and laboratory environments to verify the effectiveness of this wearable human movement recognition method. The results show that the recognition accuracy for standing, walking, and jumping reaches 98.33%, 96.67%, and 94.60%, respectively, and the average recognition rate is 96.53%. Compared with similar methods, this method not only improves the recognition accuracy but also simplifies the recognition algorithm and effectively saves computing resources. This research is expected to provide a new perspective for the recognition of human dynamic behavior and promote the wider application of wearable technology in the field of daily living assistance and health management.
Asunto(s)
Algoritmos , Movimiento , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Adulto , Caminata , Femenino , Adulto JovenRESUMEN
To alleviate the problems of environmental pollution and energy crisis, aggressive development of clean and alternative energy technologies, in particular, water splitting, metal-air batteries, and fuel cells involving two key half reactions comprising hydrogen evolution reaction (HER) and oxygen reduction (ORR), is crucial. In this work, an innovative hybrid comprising heterogeneous Cu/Co bimetallic nanoparticles homogeneously dispersed on a nitrogen-doped carbon layer (Cu/Co/NC) was constructed as a bifunctional electrocatalyst toward HER and ORR via a hydrothermal reaction along with post-solid-phase sintering technique. Thanks to the interfacial coupling and electronic synergism between the Cu and Co bimetallic nanoparticles, the Cu/Co/NC catalyst showed improved catalytic ORR activity with a half-wave potential of 0.865 V and an excellent stability of more than 30 h, even compared to 20 wt% Pt/C. The Cu/Co/NC catalyst also exhibited excellent HER catalytic performance with an overpotential of below 149 mV at 10 mA/cm2 and long-term operation for over 30 h.
RESUMEN
Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.
RESUMEN
BACKGROUND: This study was designed to compare the clinical and patient-reported outcomes (PROs) between the enhanced recovery after surgery (ERAS) protocol and conventional care in patients undergoing esophagectomy for cancer, which have not previously been compared. METHODS: This single-center retrospective study included prospective PRO data from August 2019 to June 2021. Clinical outcomes included perioperative complications and postoperative length of stay (PLOS). Patient-reported outcomes were assessed by using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (QLQ-C30) and esophagus-specific module (QLQ-OES18) preoperatively to 6 months postoperatively. Mixed-effects models were used to longitudinally compare quality of life (QOL) scores between the two modes. RESULTS: Patients undergoing conventional care and ERAS were analyzed (n = 348 and 109, respectively). The ERAS group had fewer overall complications, pneumonia, arrhythmia, and a shorter PLOS than the conventional group, and outperformed the conventional group in five functional QLQ-C30 domains and five symptom QLQ-OES18 domains, including less dysphagia (p < 0.0001), trouble talking (p = 0.0006), and better eating (p < 0.0001). These advantages persisted for 3 months postoperatively. For the cervical circular stapled anastomosis, the initial domains and duration of benefit were reduced in the ERAS group. CONCLUSIONS: The ERAS protocol has significant advantages over conventional care in terms of clinical outcomes, lowering postoperative symptom burden, and improving functional QOL in patients who have undergone esophagectomy. Selection of the optimal technique for cervical anastomosis is a key operative component of ERAS that maintains the symptom domains and duration of the advantages of PROs.
Asunto(s)
Recuperación Mejorada Después de la Cirugía , Neoplasias Esofágicas , Esofagectomía , Medición de Resultados Informados por el Paciente , Complicaciones Posoperatorias , Calidad de Vida , Humanos , Esofagectomía/efectos adversos , Esofagectomía/métodos , Neoplasias Esofágicas/cirugía , Neoplasias Esofágicas/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Estudios de Seguimiento , Anciano , Estudios Prospectivos , Pronóstico , Tiempo de InternaciónRESUMEN
The instability of viral targets including SARS-CoV-2 in sewage is an important challenge in wastewater monitoring projects. The unrecognized interruptions in the 'cold-chain' transport from the sample collection to RNA quantification in the laboratory may undermine the accurate quantification of the virus. In this study, bovine serum albumin (BSA)-modified porous superabsorbent polymer (PSAP) beads were applied to absorb raw sewage samples as a simple method for viral RNA preservation. The preservation efficiency for SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA were examined during storage for 14 days at 4 °C or room temperature against the control (no beads applied). While a non-significant difference was observed at 4 °C (â¼80 % retention for both control and PSAP-treated sewage), the reduction of SARS-CoV-2 RNA concentrations was significantly lower in sewage retrieved from PSAP beads (25-40 % reduction) compared to control (>60 % reduction) at room temperature. On the other hand, the recovery of PMMoV, known for its high persistence in raw sewage, from PSAP beads or controls were consistently above 85 %, regardless of the storage temperature. Our results demonstrate the applicability of PSAP beads to wastewater-based epidemiology (WBE) projects for preservation of SARS-CoV-2 RNA in sewage, especially in remote settings with no refrigeration capabilities.
Asunto(s)
Polímeros , ARN Viral , SARS-CoV-2 , Aguas del Alcantarillado , Aguas Residuales , Aguas Residuales/virología , Aguas Residuales/química , Aguas del Alcantarillado/virología , ARN Viral/análisis , Porosidad , Monitoreo del Ambiente/métodos , COVID-19/prevención & controlRESUMEN
The immune response induced by respiratory syncytial virus (RSV) infection is closely related to changes in the composition and function of gastrointestinal microorganisms. However, the specific mechanism remains unknown and the pulmonary-intestinal axis deserves further study. In this study, the mRNA levels of ROR-γt and Foxp3 in the lung and intestine increased first and then decreased. IL-17 and IL-22 reached the maximum on the third day after infection in the lung, and on the second day after infection in the small intestine and colon, respectively. Reg⠢γ in intestinal tissue reached the maximum on the third day after RSV infection. Moreover, the genus enriched in the RSV group was Aggregatibacter, and Proteus was reduced. RSV infection not only causes Th17/Treg cell imbalance in the lungs of mice but also leads to the release of excessive IL-22 from the lungs through blood circulation which binds to IL-22 receptors on the intestinal surface, inducing Reg⠢γ overexpression, impaired intestinal Th17/Treg development, and altered gut microbiota composition. Our research reveals a significant link between the pulmonary and intestinal axis after RSV infection. IMPORTANCE: RSV is the most common pathogen causing acute lower respiratory tract infections in infants and young children, but the complex interactions between the immune system and gut microbiota induced by RSV infection still requires further research. In this study, it was suggested that RSV infection in 7-day-old BALB/c suckling mice caused lung inflammation and disruption of Th17/Treg cells development, and altered the composition of gut microbiota through IL-22 induced overexpression of Reg⠢γ, leading to intestinal immune injury and disruption of gut microbiota. This research reveals that IL-22 may be the link between the lung and gut. This study may provide a new insight into the intestinal symptoms caused by RSV and other respiratory viruses and the connection between the lung and gut axis, as well as new therapeutic ideas for the treatment of RSV-infected children.
Asunto(s)
Microbioma Gastrointestinal , Interleucina-22 , Interleucinas , Pulmón , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Linfocitos T Reguladores , Células Th17 , Animales , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/microbiología , Microbioma Gastrointestinal/inmunología , Linfocitos T Reguladores/inmunología , Ratones , Células Th17/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/virología , Pulmón/patología , Interleucinas/metabolismo , Interleucinas/genética , Interleucinas/inmunología , Virus Sincitiales Respiratorios/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , Femenino , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/inmunología , Proteínas Asociadas a Pancreatitis/metabolismo , Intestinos/inmunología , Intestinos/microbiología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genéticaRESUMEN
Piezocatalysis-induced dye degradation has garnered significant attention as an effective method for addressing wastewater treatment challenges. In our study, we employed a room-temperature sonochemical method to synthesize piezoelectric barium titanate nanoparticles (BaTiO3: BTO) with varying levels of Li doping. This approach not only streamlined the sample preparation process but also significantly reduced the overall time required for synthesis, making it a highly efficient and practical method. One of the key findings was the exceptional performance of the Li-doped BTO nanoparticles. With 20â mg of Li additive, we achieved 90 % removal of Rhodamine B (RhB) dye within a relatively short timeframe of 150â minutes, all while subjecting the sample to ultrasonic vibration. This rapid and efficient dye degradation was further evidenced by the calculated kinetic rate constant, which indicated seven times faster degradation rate compared to pure BTO. The enhanced piezoelectric performance observed in the Li-doped BTO nanoparticles can be attributed to the strategic substitution of Li atoms, which facilitated a more efficient transfer of charge charges at the interface. Overall, our study underscores the potential of piezocatalysis coupled with advanced materials like Li-doped BTO nanoparticles as a viable and promising solution for wastewater treatment, offering both efficiency and environmental sustainability.
RESUMEN
Combining the detection of tumor protein markers with the capture of circulating tumor cells (CTCs) represents an ultra-promising approach for early tumor detection. However, current methodologies have not yet achieved the necessary low detection limits and efficient capture. Here, a novel polypyrrole nanotentacles sensing platform featuring anemone-like structures capable of simultaneously detecting protein biomarkers and capturing CTCs is introduced. The incorporation of nanotentacles significantly enhances the electrode surface area, providing abundant active sites for antibody binding. This enhancement allows detecting nucleus matrix protein22 and bladder tumor antigen with 2.39 and 3.12 pg mL-1 detection limit, respectively. Furthermore, the developed sensing platform effectively captures MCF-7 cells in blood samples with a detection limit of fewer than 10 cells mL-1, attributed to the synergistic multivalent binding facilitated by the specific recognition antibodies and the positive charge on the nanotentacles surface. This sensing platform demonstrates excellent detection capabilities and outstanding capture efficiency, offering a simple, accurate, and efficient strategy for early tumor detection.
RESUMEN
Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.
RESUMEN
Image-guided interventional oncology procedures can greatly enhance the outcome of cancer treatment. As an enhancing procedure, oncology smart material delivery can increase cancer therapy's quality, effectiveness, and safety. However, the effectiveness of enhancing procedures highly depends on the accuracy of smart material placement procedures. Inaccurate placement of smart materials can lead to adverse side effects and health hazards. Image guidance can considerably improve the safety and robustness of smart material delivery. In this study, we developed a novel generative deep-learning platform that highly prioritizes clinical practicality and provides the most informative intra-operative feedback for image-guided smart material delivery. XIOSIS generates a patient-specific 3D volumetric computed tomography (CT) from three intraoperative radiographs (X-ray images) acquired by a mobile C-arm during the operation. As the first of its kind, XIOSIS (i) synthesizes the CT from small field-of-view radiographs;(ii) reconstructs the intra-operative spacer distribution; (iii) is robust; and (iv) is equipped with a novel soft-contrast cost function. To demonstrate the effectiveness of XIOSIS in providing intra-operative image guidance, we applied XIOSIS to the duodenal hydrogel spacer placement procedure. We evaluated XIOSIS performance in an image-guided virtual spacer placement and actual spacer placement in two cadaver specimens. XIOSIS showed a clinically acceptable performance, reconstructed the 3D intra-operative hydrogel spacer distribution with an average structural similarity of 0.88 and Dice coefficient of 0.63 and with less than 1 cm difference in spacer location relative to the spinal cord.