Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 129887, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383251

RESUMEN

Infected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc. Here, we designed a novel gelatin-based hydrogel wound dressing Gel-TA-Fe3+. The hydrogels used tannic-modified gelatin as the main body and Fe3+ as the crosslinking agent to achieve a controllable rapid sol-gel transition. The hydrogels exhibited tough mechanical properties, excellent antibacterial ability, biocompatibility and an acceptable temperature response to near-infrared light (NIR). Moreover, the hydrogels could promote the healing process of MRSA-infected skin wound in rats. This multifunctional hydrogel was thought to have potential for emergency treatment of bacterial infected wound.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratas , Gelatina/farmacología , Cicatrización de Heridas , Suplementos Dietéticos , Antibacterianos/farmacología , Hidrogeles/farmacología , Infección de Heridas/tratamiento farmacológico
2.
Sci Rep ; 13(1): 18103, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872303

RESUMEN

Heat shock transcription factors (Hsf) are pivotal as essential transcription factors. They function as direct transcriptional activators of genes regulated by thermal stress and are closely associated with various abiotic stresses. Asparagus (Asparagus officinalis) is a vegetable of considerable economic and nutritional significance, abundant in essential vitamins, minerals, and dietary fiber. Nevertheless, asparagus is sensitive to environmental stresses, and specific abiotic stresses harm its yield and quality. In this context, Hsf members have been discerned through the reference genome, and a comprehensive analysis encompassing physical and chemical attributes, evolutionary aspects, motifs, gene structure, cis-acting elements, collinearity, and expression patterns under abiotic stresses has been conducted. The findings identified 18 members, categorized into five distinct subgroups. Members within each subgroup exhibited analogous motifs, gene structures, and cis-acting elements. Collinearity analysis unveiled a noteworthy pattern, revealing that Hsf members within asparagus shared one, two, and three pairs with counterparts in Arabidopsis, Oryza sativa, and Glycine max, respectively.Furthermore, members displayed tissue-specific expression during the seedling stage, with roots emerging as viable target tissue. Notably, the expression levels of certain members underwent modification under the influence of abiotic stresses. This study establishes a foundational framework for understanding Hsf members and offers valuable insights into the potential application of molecular breeding in the context of asparagus cultivation.


Asunto(s)
Asparagus , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Asparagus/genética , Asparagus/metabolismo , Verduras/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
3.
Ecotoxicol Environ Saf ; 265: 115519, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769580

RESUMEN

Heavy metal (HM) stress is a non-negligible abiotic stress that seriously restricts crop yield and quality, while the sprout stage is the most sensitive to stress and directly impacts the growth and development of the later stage. Melatonin (N-acetyl-5-methoxytryptamine), as an exogenous additive, enhances stress resistance due to its ability to oxidize and reduce. However, few reports on exogenous melatonin to tiger nuts under HM stress have explored whether exogenous melatonin enhances plants' resistance to heavy metals. Here, "Jisha 2″ was used as material, with a stress concentration of 5 mg/L and 100 µmol/L of CdCl2 to explore whether exogenous melatonin enhances plant resistance and molecular mechanism. The result revealed that stress limits growth, while melatonin alleviated the sprout damage under stress from the phenotypes. Moreover, stress-enhanced reactive oxygen species (ROS) accumulation and membrane lipid peroxidation, while melatonin-increased ROS reduce damage via the analysis of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) and malondialdehyde (MDA) content, hydrogen peroxide (H2O2), superoxide anion (O2-), and Electrolyte leakage (El). Further results indicated that HM leads to DNA damage while exogenous melatonin will repair the damage by analyzing random amplified polymorphic DNA (RAPD), DNA cross-linking, 8-hydroxy-20-deoxyguanine level, and relative density of apurinic sites. Furthermore, gene expression in the DNA-repaired pathway exhibited similar results. These results applied that exogenous melatonin released the hurt caused by HM stress, with DNA repair and ROS balance serving as candidate pathways. This study elucidated the mechanism of melatonin's influence and provided theoretical insights into its application in tiger nuts.


Asunto(s)
Cyperus , Melatonina , Melatonina/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cadmio/metabolismo , Peróxido de Hidrógeno/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , ADN/metabolismo , Estrés Oxidativo
4.
ACS Appl Mater Interfaces ; 15(31): 37214-37231, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37498537

RESUMEN

Currently, antibiotics are the most common treatment for bacterial infections in clinical practice. However, with the abuse of antibiotics and the emergence of drug-resistant bacteria, the use of antibiotics has faced an unprecedented challenge. It is imminent to develop nonantibiotic antimicrobial agents. Based on the cation-π structure of barnacle cement protein, a polyphosphazene-based polymer poly[(N,N-dimethylethylenediamine)-g-(N,N,N,N-dimethylaminoethyl p-ammonium bromide (ammonium bromide)-g-(N,N,N,N-dimethylaminoethyl acetate ethylammonium bromide)] (PZBA) with potential adhesion and inherent antibacterial properties was synthesized, and a series of injectable antibacterial adhesive hydrogels (PZBA-PVA) were prepared by cross-linking with poly(vinyl alcohol) (PVA). PZBA-PVA hydrogels showed good biocompatibility, and the antibacterial rate of the best-performed hydrogel reached 99.81 ± 0.04% and 98.80 ± 2.16% against Staphylococcus aureus and Escherichia coli within 0.5 h in vitro, respectively. In the infected wound model, the healing rate of the PZBA-PVA-treated group was significantly higher than that of the Tegaderm film group due to the fact that the hydrogel suppressed inflammatory responses and modulated the infiltration of immune cells. Moreover, the wound healing mechanism of the PZBA-PVA hydrogel was further evaluated by real-time polymerase chain reaction and total RNA sequencing. The results indicated that the process of hemostasis and tissue development was prompted and the inflammatory and immune responses were suppressed to accelerate wound healing. Overall, the PZBA-PVA hydrogel is shown to have the potential for infected wound healing application.


Asunto(s)
Infecciones Estafilocócicas , Adhesivos Tisulares , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Antibacterianos/farmacología , Antibacterianos/química
5.
Pest Manag Sci ; 79(9): 3122-3132, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37013793

RESUMEN

BACKGROUND: Indoxacarb, representing an efficient insecticide, is normally made into a bait to spread the poison among red fire ants so that it can be widely applied in the prevention and control of Solenopsis invicta. However, the potential toxicity mechanism of S. invicta in response to indoxacarb remains to be explored. In this study, we integrated mass spectrometry imaging (MSI) and untargeted metabolomics methods to reveal disturbed metabolic expression levels and spatial distribution within the whole-body tissue of S. invicta treated with indoxacarb. RESULTS: Metabolomics results showed a significantly altered level of metabolites after indoxacarb treatment, such as carbohydrates, amino acids and pyrimidine and derivatives. Additionally, the spatial distribution and regulation of several crucial metabolites resulting from the metabolic pathway and lipids can be visualized using label-free MSI methods. Specifically, xylitol, aspartate, and uracil were distributed throughout the whole body of S. invicta, while sucrose-6'-phosphate and glycerol were mainly distributed in the abdomen of S. invicta, and thymine was distributed in the head and chest of S. invicta. Taken together, the integrated MSI and metabolomics results indicated that the toxicity mechanism of indoxacarb in S. invicta is closely associated with the disturbance in several key metabolic pathways, such as pyrimidine metabolism, aspartate metabolism, pentose and glucuronate interconversions, and inhibited energy synthesis. CONCLUSION: Collectively, these findings provide a new perspective for the understanding of toxicity assessment between targeted organisms S. invicta and pesticides. © 2023 Society of Chemical Industry.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Ácido Aspártico , Espectrometría de Masas , Pirimidinas
6.
J Hazard Mater ; 453: 131304, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043861

RESUMEN

Indoxacarb is a widely used insecticide in the prevention and control of agricultural pests, whereas its negative effects on non-target organisms remain largely unclear. Herein, we demonstrated the integrated metabolomics and mass spectrometry imaging (MSI) methods to investigate the chronic exposure toxicity of indoxacarb at environmentally relevant concentrations in adult zebrafish (Danio rerio) liver. Results showed that movement behaviors of zebrafish can be affected and catalase (CAT), glutamic oxalacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) activities were significantly increased after indoxacarb exposure for 28 days. Pathological analysis of zebrafish livers also showed that cavitation and pathological reactions occur. Metabolomics results indicated that metabolic pathways of zebrafish liver could be significantly affected by indoxacarb, such as tricarboxylic acid (TCA) cycle and various amino acid metabolisms. MSI results revealed the spatial differentiation of crucial metabolites involved in these metabolic pathways within zebrafish liver. Taken together, these integrated MSI and metabolomics results revealed that the toxicity of indoxacarb arises from metabolic pathways disturbance, which resulted in the decrease of liver detoxification ability. These findings will promote the current understanding of pesticide risks and metabolic disorders in zebrafish liver, which provide new insights into the environmental risk assessment of insecticides on aquatic organisms.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Animales , Pez Cebra/metabolismo , Metabolómica/métodos , Insecticidas/toxicidad , Insecticidas/metabolismo , Espectrometría de Masas , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
7.
Front Microbiol ; 14: 1040201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876078

RESUMEN

According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4-2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4-2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4-2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4-2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4-2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics.

8.
J Agric Food Chem ; 71(1): 211-222, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36538414

RESUMEN

The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Plaguicidas , Animales , Rotenona/toxicidad , Lipidómica , Insecticidas/farmacología , Plaguicidas/metabolismo , Aminoácidos/metabolismo , Larva
9.
ACS Appl Mater Interfaces ; 14(47): 52643-52658, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382579

RESUMEN

The high level of reactive oxygen species (ROS) and bacterial infection impede wound healing of the diabetic wound. Here, benefiting from the antioxidation effects of tannic acid (TA) and ROS-responsive phenylborate ester (PBAE), a series of ROS-responsive anti-inflammatory TA-conjugated nanoparticle hydrogels (PPBA-TA-PVA) can be obtained by conveniently mixing TA, phenylboric acid modified polyphosphazene (PPBA), and poly(vinyl alcohol) (PVA). The obtained PPBA-TA-PVA hydrogels could effectively inhibit the growth of Escherichia coli (antibacterial rate = 93.1 ± 1.1%) within 4 h and effectively scavenge both 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and •OH radicals in vitro. Besides, the cell migration rate of HDFa cells treated with PPBA-TA-PVA hydrogels (84.2 ± 4.6%) was twice the rate of normal cells (43.8 ± 8.1%) after 24 h of cocultivation. The clinical relevance was demonstrated further by assessing the PPBA-TA-PVA hydrogels in full-thickness excisional wounds in a streptozotocin (STZ)-induced diabetic rat model. The PPBA-TA-PVA hydrogels could act as effective ROS-scavenging agents to alleviate inflammation and accelerate wound closure by decreasing the proinflammatory cytokines (IL-6, IL-1ß) and increasing the gene expression of TGF-ß1, COL-1, and COL-3, which resulted in faster re-epithelialization and increased formation of granulation tissue.


Asunto(s)
Diabetes Mellitus , Profármacos , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Polifenoles/farmacología , Profármacos/farmacología , Especies Reactivas de Oxígeno/farmacología , Cicatrización de Heridas , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Taninos/farmacología , Taninos/uso terapéutico
10.
Adv Colloid Interface Sci ; 309: 102794, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36215901

RESUMEN

Fog on a solid surface is prejudicial to its optical properties and will even cause hygienic and safety concerns in some exceptional cases. Thus, antifogging coatings have attracted great interest in fundamental research and industry applications. Superhydrophilic and superhydrophobic coatings have been mainly explored and described in the antifogging field. In recent years, hygroscopic antifogging coatings of hydrophilic and hydrophobic parties have been introduced due to their unique properties. In this review, three antifogging mechanisms are reviewed to provide design strategies for antifogging surfaces. The current techniques for fabricating polymeric antifogging coatings are discussed in depth. The recent progress in materials and structures for antifogging surfaces is briefly summarize. Finally, the practical applications and outlooks related to multifunctional antifogging coatings are mentioned.


Asunto(s)
Polímeros , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/farmacología , Polímeros/química , Humectabilidad
11.
Curr Pharm Des ; 28(39): 3175-3193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676840

RESUMEN

Diabetes has become a serious threat to human health, causing death and pain to numerous patients. Transdermal insulin delivery is a substitute for traditional insulin injection to avoid pain from the injection. Transdermal methods include non-invasive and invasive methods. As the non-invasive methods could hardly get through the stratum corneum, minimally invasive devices, especially microneedles, could enhance the transappendageal route in transcutaneous insulin delivery, and could act as connectors between the tissue and outer environment or devices. Microneedle patches have been in quick development in recent years and with different types, materials and functions. In those patches, the smart microneedle patch could perform as a sensor and reactor responding to glucose to regulate the blood level. In the smart microneedles field, the phenylboronic acid system and the glucose oxidase system have been successfully applied on the microneedle platform. Insulin transdermal delivery strategy, microneedles technology and smart microneedles' development would be discussed in this review.


Asunto(s)
Insulina , Agujas , Humanos , Administración Cutánea , Sistemas de Liberación de Medicamentos , Dolor , Microinyecciones
12.
Anal Bioanal Chem ; 414(16): 4777-4790, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35508646

RESUMEN

Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.


Asunto(s)
Manejo de Especímenes , Pez Cebra , Animales , Abejas , Técnicas Histológicas , Insectos , Mamíferos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
13.
Nanomicro Lett ; 14(1): 68, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35217977

RESUMEN

Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.

14.
Adv Healthc Mater ; 11(1): e2101421, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704383

RESUMEN

Wound dressings with excellent adhesiveness, antibacterial, self-healing, hemostasis properties, and therapeutic effects have great significance for the treatment of acute trauma. So far, numerous mussel-inspired catechol-based wet adhesives have been reported, opening a pathway for the treatment of acute trauma. However, catechol-based hydrogels are easily oxidized, which limits their applications. Here, the design of a polyphosphazene and non-catechol based antibacterial injectable hydrogel is reported as a multifunctional first aid bandage. Inspired by barnacle cement proteins, a series of dynamic phenylborate ester based adhesive hydrogels are prepared by combining the cation-π structure modified polyphosphazene with polyvinyl alcohol. The inherent antibacterial property (4 h antibacterial rate 99.6 ± 0.2%), anti-mechanical damage, and hemostatic behavior are investigated to confirm multi-functions of wound dressings. In water, the hydrogels firmly adhere to tissue surfaces through cation-π and π-π interactions as well as hydrogen bonding (adhesion strength = 45 kPa). Moreover, in vivo experiments indicate the hydrogels can shorten the bleeding time and reduce the amount of bleeding by 88%, and significantly accelerate the wound healing rate. These hydrogels have a promising application in the treatment of acute trauma, which is in urgent need of anti-infection and hemostasis.


Asunto(s)
Vendajes , Hidrogeles , Antibacterianos/farmacología , Catecoles/farmacología , Compuestos Organofosforados , Polímeros
15.
Nanomaterials (Basel) ; 11(5)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069856

RESUMEN

Food safety issues caused by pesticide residue have exerted far-reaching impacts on human daily life, yet the available detection methods normally focus on surface residue rather than pesticide penetration to the internal area of foods. Herein, we demonstrated gold nanoparticle (AuNP)-immersed paper imprinting mass spectrometry imaging (MSI) for monitoring pesticide migration behaviors in various fruits and vegetables (i.e., apple, cucumber, pepper, plum, carrot, and strawberry). By manually stamping food tissues onto AuNP-immersed paper, this method affords the spatiotemporal visualization of insecticides and fungicides within fruits and vegetables, avoiding tedious and time-consuming sample preparation. Using the established MSI platform, we can track the migration of insecticides and fungicides into the inner region of foods. The results revealed that both the octanol-water partition coefficient of pesticides and water content of garden stuffs could influence the discrepancy in the migration speed of pesticides into food kernels. Taken together, this nanopaper imprinting MSI is poised to be a powerful tool because of its simplicity, rapidity, and easy operation, offering the potential to facilitate further applications in food analysis. Moreover, new perspectives are given to provide guidelines for the rational design of novel pesticide candidates, reducing the risk of food safety issues caused by pesticide residue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...