Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Nanotechnology ; 35(46)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221963

RESUMEN

The study utilized transition metal chalcogenide, molybdenum diselenide (MoSe2), for application in the field of bioelectrochemical sensing. The MoSe2was combined with carbon nanotubes (CNTs) by chemical vapor deposition to enhance the specific surface area and improve the detection sensitivity. To further increase the contact area between the electrolyte and the electrode, photolithography techniques were employed to fabricate hive-shaped CNTs, thereby enhancing the specific surface area. Next, cholesterol oxidase (ChOx) was coated onto the electrode material, creating a cholesterol biosensor. Cyclic voltammetry was utilized to detect the concentration of cholesterol. The experiment involved segmented testing for cholesterol concentrations ranging from 0µM to 10 mM. Excellent sensitivity, low detection limits, and high accuracy were achieved. In the cholesterol concentration range of 0µM-100µM, the experiment achieved the highest sensitivity of 4.44µAµM⋅cm-2. Consequently, all data indicated that ChOx/MoSe2/CNTs functioned as an excellent cholesterol sensor in the study.


Asunto(s)
Técnicas Biosensibles , Colesterol Oxidasa , Colesterol , Técnicas Electroquímicas , Molibdeno , Nanotubos de Carbono , Nanotubos de Carbono/química , Colesterol/análisis , Colesterol/química , Técnicas Biosensibles/métodos , Molibdeno/química , Técnicas Electroquímicas/métodos , Colesterol Oxidasa/química , Colesterol Oxidasa/metabolismo , Límite de Detección , Electrodos , Enzimas Inmovilizadas/química
2.
Lasers Med Sci ; 39(1): 216, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141143

RESUMEN

This brief report discusses the challenges in treating dermal melanosis and the limitations of current laser treatments due to inadequate tissue penetration and potential side effects. It introduces laser-induced optical breakdown (LIOB) as a novel therapeutic approach using a picosecond laser with a diffractive lens array (DLA) to target dermal pigmentation effectively. LIOB induces multiphoton ionization, leading to melanin clearance through phagocytosis and apoptotic cell removal, while also promoting dermal remodeling and collagen synthesis. We present a case of successful treatment of dermal pigmentation in a 55-year-old woman using 755 nm-picosecond alexandrite laser therapy, demonstrating significant improvement without recurrence. The findings suggest that LIOB offers a promising solution for acquired dermal hypermelanosis by addressing both diffuse and localized pigmentation effectively, leading to skin rejuvenation with minimal downtime and high patient satisfaction.


Asunto(s)
Láseres de Estado Sólido , Humanos , Femenino , Persona de Mediana Edad , Láseres de Estado Sólido/uso terapéutico , Melanosis/radioterapia , Melanosis/terapia , Melaninas/metabolismo , Terapia por Luz de Baja Intensidad/métodos , Terapia por Luz de Baja Intensidad/instrumentación , Rejuvenecimiento
4.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125879

RESUMEN

This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-ß1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFß-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.


Asunto(s)
Conexina 43 , Obstrucción del Cuello de la Vejiga Urinaria , Vejiga Urinaria , Animales , Obstrucción del Cuello de la Vejiga Urinaria/metabolismo , Obstrucción del Cuello de la Vejiga Urinaria/patología , Femenino , Ratas , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/patología , Conexina 43/metabolismo , Trasplante de Células Madre/métodos , Transducción de Señal , Ratas Sprague-Dawley , Proteína Smad2/metabolismo , Modelos Animales de Enfermedad , Uniones Comunicantes/metabolismo , Colágeno/metabolismo
5.
Sci Rep ; 14(1): 20167, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215111

RESUMEN

Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq). Using this method, we were able to identify novel group 1 and group 2 ILC subsets that exist after exposure to both fungal allergen and burn pit-related constituents (BPC) that include dioxin, aromatic hydrocarbon, and particulate matter. Toxin exposure in combination with fungal allergen induced activation of specific ILC1/NK and ILC2 populations as well as promoted neutrophilic lung inflammation. Oxidative stress pathways and downregulation of specific ribosomal protein genes (Rpl41 and Rps19) implicated in anti-inflammatory responses were present after BPC exposure. Increased IFNγ expression and other pro-neutrophilic mediator transcripts were increased in BPC-stimulated lung innate lymphoid cells. Further, the addition of BPC induced Hspa8 (encodes HSC70) and aryl hydrocarbon transcription factor activity across multiple lung ILC subsets. Overall, using an airway disease model that develops after occupational and environmental exposures, we demonstrate an effective method to better understand heterogenous ILC subset activation.


Asunto(s)
Inmunidad Innata , Pulmón , Linfocitos , Animales , Inmunidad Innata/efectos de los fármacos , Pulmón/inmunología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Material Particulado/efectos adversos , Material Particulado/toxicidad , Alérgenos/inmunología , Neumonía/inmunología , Neumonía/genética
6.
Materials (Basel) ; 17(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39203170

RESUMEN

Deep drawing has been practiced in various manufacturing industries for many years. With the aid of stamping equipment, materials are sheared to different shapes and dimensions for users. Meanwhile, through artificial intelligence (AI) training, machines can make decisions or perform various functions. The aim of this study is to discuss the geometric and process parameters for A7075 in deep drawing and derive the formable regions of sound products for different forming parameters. Four parameters-forming temperature, punch speed, blank diameter and thickness-are used to investigate their effects on the forming results. Through finite element simulation, a database is established and used for machine learning (ML) training and validation to derive an AI prediction model. Importing the forming parameters into this prediction model can obtain the forming results rapidly. To validate the formable regions of sound products, several experiments are conducted and the results are compared with the prediction results to verify the feasibility of applying ML to deep drawing processes of aluminum alloy A7075 and the reliability of the AI prediction model.

7.
J Affect Disord ; 367: 307-317, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39187183

RESUMEN

BACKGROUND: Early life adversity is a risk factor for psychopathology and is associated with epigenetic alterations in the 5-HT1A receptor gene promoter. The 5-HT1A receptor mediates neurotrophic effects, which could affect brain structure and function. We examined relationships between self-reported early childhood abuse, 5-HT1A receptor promoter DNA methylation, and gray matter volume (GMV) in Major Depressive Disorder (MDD). METHODS: Peripheral DNA methylation of 5-HT1A receptor promoter CpG sites -681 and -1007 was assayed in 50 individuals with MDD, including 18 with a history of childhood abuse. T1-weighted structural magnetic resonance imaging (MRI) was performed. Voxel-based morphometry (VBM) was quantified in amygdala, hippocampus, insula, occipital lobe, orbitofrontal cortex, temporal lobe, parietal lobe, and at the voxel level. RESULTS: No relationship was observed between DNA methylation and history of childhood abuse. We observed regional heterogeneity comparing -681 CpG site methylation and GMV (p = 0.014), with a positive relationship to GMV in orbitofrontal cortex (p = 0.035). Childhood abuse history was associated with higher GMV considering all ROIs simultaneously (p < 0.01). In whole-brain analyses, childhood abuse history was positively correlated with GMV in multiple clusters, including insula and orbitofrontal cortex (pFWE = 0.005), and negatively in intracalcarine cortex (pFWE = 0.001). LIMITATIONS: Small sample size, childhood trauma assessment instrument used, and assay of peripheral, rather than CNS, methylation. CONCLUSIONS: These cross-sectional findings support hypotheses of 5-HT1A receptor-related neurotrophic effects, and of increased regional GMV as a potential regulatory mechanism in the setting of childhood abuse. Orbitofrontal cortex was uniquely associated with both childhood abuse history and 5-HT1A receptor methylation.

8.
J Assist Reprod Genet ; 41(9): 2349-2358, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38963605

RESUMEN

PURPOSE: To determine if an explainable artificial intelligence (XAI) model enhances the accuracy and transparency of predicting embryo ploidy status based on embryonic characteristics and clinical data. METHODS: This retrospective study utilized a dataset of 1908 blastocyst embryos. The dataset includes ploidy status, morphokinetic features, morphology grades, and 11 clinical variables. Six machine learning (ML) models including Random Forest (RF), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machine (SVM), AdaBoost (ADA), and Light Gradient-Boosting Machine (LGBM) were trained to predict ploidy status probabilities across three distinct datasets: high-grade embryos (HGE, n = 1107), low-grade embryos (LGE, n = 364), and all-grade embryos (AGE, n = 1471). The model's performance was interpreted using XAI, including SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) techniques. RESULTS: The mean maternal age was 38.5 ± 3.85 years. The Random Forest (RF) model exhibited superior performance compared to the other five ML models, achieving an accuracy of 0.749 and an AUC of 0.808 for AGE. In the external test set, the RF model achieved an accuracy of 0.714 and an AUC of 0.750 (95% CI, 0.702-0.796). SHAP's feature impact analysis highlighted that maternal age, paternal age, time to blastocyst (tB), and day 5 morphology grade significantly impacted the predictive model. In addition, LIME offered specific case-ploidy prediction probabilities, revealing the model's assigned values for each variable within a finite range. CONCLUSION: The model highlights the potential of using XAI algorithms to enhance ploidy prediction, optimize embryo selection as patient-centric consultation, and provides reliability and transparent insights into the decision-making process.


Asunto(s)
Inteligencia Artificial , Ploidias , Humanos , Femenino , Adulto , Embarazo , Blastocisto/citología , Estudios Retrospectivos , Transferencia de Embrión/métodos , Diagnóstico Preimplantación/métodos , Aprendizaje Automático , Fertilización In Vitro/métodos , Derivación y Consulta , Edad Materna , Máquina de Vectores de Soporte
9.
Nature ; 632(8023): 201-208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020172

RESUMEN

Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.


Asunto(s)
Competencia Celular , Células Clonales , Células Madre , Telomerasa , Animales , Masculino , Ratones , Diferenciación Celular , Linaje de la Célula , Cromatina/metabolismo , Cromatina/genética , Células Clonales/citología , Células Clonales/enzimología , Células Clonales/metabolismo , Eliminación de Gen , Genes myc , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Espermatogonias/citología , Espermatogonias/metabolismo , Células Madre/citología , Células Madre/enzimología , Células Madre/metabolismo , Telomerasa/deficiencia , Telomerasa/genética , Telomerasa/metabolismo , Transcripción Reversa , Biocatálisis , Homeostasis , Envejecimiento
10.
Nat Commun ; 15(1): 5686, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971830

RESUMEN

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.


Asunto(s)
Péptidos , Transición de Fase , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Amiloide/metabolismo , Amiloide/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Luz
11.
J Formos Med Assoc ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030141

RESUMEN

Secondary hypertension in the elderly poses many challenges and requires a comprehensive diagnostic and management approach. This review explores the prevalence, diagnostic strategies, and treatment modalities for secondary hypertension in elderly patients, focusing on etiologies including primary aldosteronism, renal vascular disease, renal parenchymal disease, obstructive sleep apnea, thyroid disorders, Cushing's syndrome, pheochromocytomas and paragangliomas, and drug-induced hypertension. Key considerations include age-related changes in physiology and atypical presentations of underlying conditions necessitating thorough screening with a combination of clinical evaluation, laboratory tests, and imaging studies. Collaboration among healthcare providers is essential to ensure a timely diagnosis and personalized management tailored to the unique needs of elderly patients. Further research is needed to address knowledge gaps and optimize clinical strategies for managing secondary hypertension in this population.

12.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979234

RESUMEN

Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq). Using this method, we were able to identify novel group 1 and group 2 ILC subsets that exist after exposure to both fungal allergen and burn pit-related constituents (BPC) that include dioxin, aromatic hydrocarbon, and particulate matter. Toxin exposure in combination with fungal allergen induced activation of specific ILC1/NK and ILC2 populations as well as promoted neutrophilic lung inflammation. Oxidative stress pathways and downregulation of specific ribosomal protein genes ( Rpl41 and Rps19 ) implicated in anti-inflammatory responses were present after BPC exposure. Increased IFNγ expression and other pro-neutrophilic mediator transcripts were increased in BPC-stimulated lung innate lymphoid cells. Further, the addition of BPC induced Hspa8 (encodes HSC70) and aryl hydrocarbon transcription factor activity across multiple lung ILC subsets. Overall, using an airway disease model that develops after occupational and environmental exposures, we demonstrate an effective method to better understand heterogenous ILC subset activation.

13.
Pediatr Hematol Oncol ; 41(7): 470-479, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38867542

RESUMEN

Patients with newly diagnosed hematological malignancies often present with a considerable cellular burden, leading to complications including hyperkalemia. However, pseudohyperkalemia, arising from in vitro cell lysis, can pose challenges in clinical practice. Although pseudohyperkalemia is frequently reported in adult hematological malignancies, its occurrence in pediatric patients is underreported, and its incidence in this demographic remains unclear. We retrospectively reviewed the medical records of pediatric patients who received a new diagnosis of hematological malignancies from 2011 to 2022 at Taichung Veterans General Hospital. Hyperkalemia was defined by a serum or plasma potassium level exceeding 5.5 mEq/L. Pseudohyperkalemia was defined by 1) a potassium decrease of over 1 mEq/L in within 4 h without intervention or 2) the absence of electrocardiography changes indicative of hyperkalemia. Cases with apparent red blood cell hemolysis were excluded. A total of 157 pediatric patients with a new diagnosis of hematological malignancies were included, 14 of whom exhibited hyperkalemia. Among these 14 cases, 7 cases (4.5%) were of pseudohyperkalemia. This rate increased to 21.2% in patients with initial hyperleukocytosis. Pseudohyperkalemia was associated with a higher initial white blood cell count and lower serum sodium level. All episodes of pseudohyperkalemia occurred in the pediatric emergency department, where samples were obtained as plasma, whereas all true hyperkalemia cases were observed in the ordinary ward or intensive care unit, where samples were obtained as serum. Timely recognition of pseudohyperkalemia is crucial to avoiding unnecessary potassium-lowering interventions in pediatric patients with newly diagnosed hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Hiperpotasemia , Humanos , Hiperpotasemia/sangre , Hiperpotasemia/etiología , Hiperpotasemia/diagnóstico , Neoplasias Hematológicas/sangre , Neoplasias Hematológicas/complicaciones , Niño , Masculino , Femenino , Estudios Retrospectivos , Preescolar , Adolescente , Lactante , Potasio/sangre
14.
Respirol Case Rep ; 12(5): e01368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736508

RESUMEN

Despite embolization being now considered the preferred treatment for PAVM, surgical intervention may be considered if the malformation involves large vessels.

15.
Int J Med Sci ; 21(5): 784-794, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617006

RESUMEN

Introduction: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder with clinical features of retinal dystrophy, obesity, postaxial polydactyly, renal anomalies, learning disabilities, hypogonadism, and genitourinary abnormalities. Nevertheless, previous studies on the phenotypic traits of BBS heterozygous carriers have generated inconclusive results. The aim of our study was to investigate the impact of BBS heterozygosity on carriers when compared to non-carriers within the Taiwanese population. Materials and Methods: This study follows a hospital-based case-control design. We employed the Taiwan Biobank version 2 (TWBv2) array to identify three specific loci associated with BBS (rs773862084, rs567573386, and rs199910690). In total, 716 patients were included in the case group, and they were compared to a control group of 2,864 patients who lacked BBS alleles. The control group was selected through gender and age matching at a ratio of 1:4. The association between BBS-related loci and comorbidity was assessed using logistic regression models. Results: We found that BBS heterozygous carriers exhibited a significant association with elevated BMI levels, especially the variant rs199910690 in MKS1 (p=0.0037). The prevalence of comorbidities in the carriers' group was not higher than that in the non-carriers' group. Besides, the average values of the biochemistry data showed no significant differences, except for creatinine level. Furthermore, we conducted a BMI-based analysis to identify specific risk factors for chronic kidney disease (CKD). Our findings revealed that individuals carrying the CA/AA genotype of the BBS2 rs773862084 variant or the CT/TT genotype of the MKS1 rs199910690 variant showed a reduced risk of developing CKD, irrespective of their BMI levels. When stratified by BMI level, obese males with the MKS1 rs199910690 variant and obese females with the BBS2 rs773862084 variant exhibited a negative association with CKD development. Conclusion: We found that aside from the association with overweight and obesity, heterozygous BBS mutations did not appear to increase the predisposition of individuals to comorbidities and metabolic diseases. To gain a more comprehensive understanding of the genetic susceptibility associated with Bardet-Biedl Syndrome (BBS), further research is warranted.


Asunto(s)
Síndrome de Bardet-Biedl , Insuficiencia Renal Crónica , Femenino , Masculino , Humanos , Síndrome de Bardet-Biedl/epidemiología , Síndrome de Bardet-Biedl/genética , Comorbilidad , Heterocigoto , Obesidad/epidemiología , Obesidad/genética , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
16.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676149

RESUMEN

Activity recognition is one of the significant technologies accompanying the development of the Internet of Things (IoT). It can help in recording daily life activities or reporting emergencies, thus improving the user's quality of life and safety, and even easing the workload of caregivers. This study proposes a human activity recognition (HAR) system based on activity data obtained via the micro-Doppler effect, combining a two-stream one-dimensional convolutional neural network (1D-CNN) with a bidirectional gated recurrent unit (BiGRU). Initially, radar sensor data are used to generate information related to time and frequency responses using short-time Fourier transform (STFT). Subsequently, the magnitudes and phase values are calculated and fed into the 1D-CNN and Bi-GRU models to extract spatial and temporal features for subsequent model training and activity recognition. Additionally, we propose a simple cross-channel operation (CCO) to facilitate the exchange of magnitude and phase features between parallel convolutional layers. An open dataset collected through radar, named Rad-HAR, is employed for model training and performance evaluation. Experimental results demonstrate that the proposed 1D-CNN+CCO-BiGRU model demonstrated superior performance, achieving an impressive accuracy rate of 98.2%. This outperformance of existing systems with the radar sensor underscores the proposed model's potential applicability in real-world scenarios, marking a significant advancement in the field of HAR within the IoT framework.


Asunto(s)
Aprendizaje Profundo , Actividades Humanas , Redes Neurales de la Computación , Radar , Humanos , Algoritmos , Internet de las Cosas
17.
Sci Rep ; 14(1): 5707, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459197

RESUMEN

Biliary tract infection (BTI), a commonly occurring abdominal disease, despite being extensively studied for its initiation and underlying mechanisms, continues to pose a challenge in the quest for identifying specific diagnostic biomarkers. Extracellular vesicles (EVs), which emanate from diverse cell types, serve as minute biological entities that mirror unique physiological or pathological conditions. Despite their potential, there has been a relatively restricted exploration of EV-oriented methodologies for diagnosing BTI. To uncover potent protein biomarkers for BTI patients, we applied a label-free quantitative proteomic method known for its unbiased and high-throughput nature. Furthermore, 192 differentially expressed proteins surfaced within EVs isolated from individuals afflicted with BTI. Subsequent GO and KEGG analyses pinpointed Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and Crumbs homolog 3 (CRB3) as noteworthy biomarkers. Validation via data analysis of plasma-derived EV samples confirmed their specificity to BTI. Our study leveraged an unbiased proteomic tool to unveil CEACAM1 and CRB3 as promising protein biomarkers in serum EVs, presenting potential avenues for the advancement of diagnostic systems for BTI detection.


Asunto(s)
Sistema Biliar , Vesículas Extracelulares , Humanos , Proteómica/métodos , Biomarcadores , Vesículas Extracelulares/metabolismo
18.
Mol Psychiatry ; 29(5): 1417-1426, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38278992

RESUMEN

Human genetic studies indicate that suicidal ideation and behavior are both heritable. Most studies have examined associations between aberrant gene expression and suicide behavior, but behavior risk is linked to the severity of suicidal ideation. Through a gene network approach, this study investigates how gene co-expression patterns are associated with suicidal ideation and severity using RNA-seq data in peripheral blood from 46 live participants with elevated suicidal ideation and 46 with no ideation. Associations with the presence of suicidal ideation were found within 18 co-expressed modules (p < 0.05), as well as in 3 co-expressed modules associated with suicidal ideation severity (p < 0.05, not explained by severity of depression). Suicidal ideation presence and severity-related gene modules with enrichment of genes involved in defense against microbial infection, inflammation, and adaptive immune response were identified and investigated using RNA-seq data from postmortem brain that revealed gene expression differences with moderate effect sizes in suicide decedents vs. non-suicides in white matter, but not gray matter. Findings support a role of brain and peripheral blood inflammation in suicide risk, showing that suicidal ideation presence and severity are associated with an inflammatory signature detectable in blood and brain, indicating a biological continuity between ideation and suicidal behavior that may underlie a common heritability.


Asunto(s)
Encéfalo , Ideación Suicida , Suicidio , Transcriptoma , Humanos , Femenino , Masculino , Transcriptoma/genética , Suicidio/psicología , Adulto , Encéfalo/metabolismo , Persona de Mediana Edad , Redes Reguladoras de Genes/genética , Depresión/genética , Depresión/sangre , Inflamación/genética , Inflamación/sangre
19.
Ann Plast Surg ; 92(1S Suppl 1): S75-S78, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286000

RESUMEN

ABSTRACT: In case of excision of nasal basal cell carcinoma (BCC), bilobed flaps are considered the criterion standard of reconstruction for defect less than 15 mm in size. However, there is still a risk of trapdoor deformity formation, of which its treatment is less discussed. A 44-year-old woman who was diagnosed with nasal BCC and underwent tumor excision with bilobed flap reconstruction presented with trapdoor deformity postoperatively. The computed Vancouver Scar Scale was 7. After early intervention of multiple laser modalities, including 2 sessions of 585-nm pulsed dye laser with a fluence of 9 J/cm2, pulse duration of 6 milliseconds, and spot size of 6 mm, 2940-nm Er-yttrium aluminum garnet (YAG) laser with a pulse energy of 800-900 mJ, repetition rate of 8-9 Hz, and laser spot size of 3-7 mm, and 5 sessions of 1064-nm Nd:YAG fractional picosecond laser with a pulse energy of 2.30-2.70 mJ, repetition rate of 8 Hz, and laser spot size of 6 mm from 5 to 23 weeks postoperatively, the Vancouver Scar Scale score improved to 1, with significant reduction of trapdoor scar erythema and puffiness. Although BCC is often curable, tumor excision causes unsatisfactory appearance satisfaction problem, owing to the apparent location of the lesion. Factors, such as sebaceous tissue thickness, reconstruction over multiple aesthetic subunits of nose, and damage to nasal cartilage framework structure during tumor removal, may increase the risk of trapdoor formation. Early intervention with multiple laser treatment can significantly revise the deformity.


Asunto(s)
Carcinoma Basocelular , Láseres de Estado Sólido , Neoplasias Cutáneas , Femenino , Humanos , Adulto , Cicatriz/patología , Nariz/cirugía , Nariz/patología , Carcinoma Basocelular/cirugía , Carcinoma Basocelular/patología , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/patología , Resultado del Tratamiento
20.
J Gastroenterol Hepatol ; 39(3): 544-551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059883

RESUMEN

BACKGROUND AND AIM: Chromoendoscopy with the use of indigo carmine (IC) dye is a crucial endoscopic technique to identify gastrointestinal neoplasms. However, its performance is limited by the endoscopist's skill, and no standards are available for lesion identification. Thus, we developed an artificial intelligence (AI) model to replace chromoendoscopy. METHODS: This pilot study assessed the feasibility of our novel AI model in the conversion of white-light images (WLI) into virtual IC-dyed images based on a generative adversarial network. The predictions of our AI model were evaluated against the assessments of five endoscopic experts who were blinded to the purpose of this study with a staining quality rating from 1 (unacceptable) to 4 (excellent). RESULTS: The AI model successfully transformed the WLI of polyps with different morphologies and different types of lesions in the gastrointestinal tract into virtual IC-dyed images. The quality ratings of the real IC-dyed and AI images did not significantly differ concerning surface structure (AI vs IC: 3.08 vs 3.00), lesion border (3.04 vs 2.98), and overall contrast (3.14 vs 3.02) from 10 sets of images (10 AI images and 10 real IC-dyed images). Although the score depended significantly on the evaluator, the staining methods (AI or real IC) and evaluators had no significant interaction (P > 0.05) with each other. CONCLUSION: Our results demonstrated the feasibility of employing AI model's virtual IC staining, increasing the possibility of being employed in daily practice. This novel technology may facilitate gastrointestinal lesion identification in the future.


Asunto(s)
Inteligencia Artificial , Lesiones Precancerosas , Humanos , Proyectos Piloto , Endoscopía/métodos , Carmin de Índigo , Carmín , Lesiones Precancerosas/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...