Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38781456

RESUMEN

Triboelectric polymers have attracted extensive attention due to their great electron-accepting and electron-donating properties in contact electrification as well as their flexible and low-cost merits and have become promising electrode materials in triboelectric nanogenerators (TENGs). However, most research has exclusively focused on improving the electron capture capability of the triboelectric layer, neglecting to enhance the electron-donating capability, which leads to a low output performance of TENG and limits its practical application. In this study, we developed a method to fabricate highly tribo-positive Nylon-11 film through roll-to-roll processing. Paired with the poly(tetrafluoroethylene) triboelectric layer, the transferred charge density of contact-separation TENG based on Nylon-11 film prepared by this method reaches 291.1 µC/m2, which has been improved by 12.4% compared with the conventional compression molding sample. The novel fabricating method can regulate the surface functional groups to achieve higher surface potential and obtain a favorable pseudohexagonal crystal phase, leading to an increasing transferred charge density in triboelectrification. Additionally, it has been analyzed that higher chemical potential of materials can facilitate the transfer of electrons from the triboelectric polymer surface. This study provides a nonadditive, simple, and effective strategy to fabricate excellent tribo-positive material, which can significantly enhance the performance of TENG.

2.
BMC Infect Dis ; 24(1): 371, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566017

RESUMEN

BACKGROUND: There is an urgent clinical need for developing novel immunoprophylaxis and immunotherapy strategies against Staphylococcus aureus (S. aureus). In our previous work, immunization with a tetra-branched multiple antigenic peptide, named MAP2-3 that mimics lipoteichoic acid, a cell wall component of S. aureus, successfully induced a humoral immune response and protected BALB/c mice against S. aureus systemic infection. In this study, we further investigated whether vaccination with MAP2-3 can elicit immunologic memory. METHODS: BALB/c mice were immunized with MAP2-3 five times. After one month of the last vaccination, mice were challenged with heat-killed S. aureus via intraperitoneal injection. After a 7-day inoculation, the percentage of plasma cells, memory B cells, effector memory T cells, and follicular helper T cells were detected by flow cytometry. The levels of IL-6, IL-21, IL-2, and IFN-γ were measured by real-time PCR and ELISA. Flow cytometry results were compared by using one-way ANOVA or Mann-Whitney test, real-time PCR results were compared by using one-way ANOVA, and ELISA results were compared by using one-way ANOVA or student's t-test. RESULTS: The percentage of plasma cells and memory B cells in the spleen and bone marrow from the MAP2-3 immunized mice was significantly higher than that from the control mice. The percentage of effector memory T cells in spleens and lymphoid nodes as well as follicular helper T cells in spleens from the MAP2-3 immunized mice were also higher. Moreover, the levels of IL-6 and IL-21, two critical cytokines for the development of memory B cells, were significantly higher in the isolated splenocytes from immunized mice after lipoteichoic acid stimulation. CONCLUSIONS: Immunization with MAP2-3 can efficiently induce memory B cells and memory T cells.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , Células B de Memoria , Ácidos Teicoicos , Ratones , Animales , Ratones Endogámicos BALB C , Staphylococcus aureus , Inmunización , Vacunación , Péptidos
4.
ACS Nano ; 18(5): 4467-4477, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38263634

RESUMEN

The energy conversion efficiency of a triboelectric nanogenerator (TENG) is severely limited by the charge density of triboelectric materials, while drastic and unavoidable charge decay happens during contact due to the insufficient charge retention capacity of positive triboelectric materials. Here, elaborately synthesized acid-ion-doped pyridine-based polybenzimidazole processing with strong charge retention capability is demonstrated to couple with negatively corona-polarized electrets. As illustrated by thermal stimulation and an ion mass spectrometer, the formation of acid-ion chimerism processes high activation energy for stored charges, and the selective anion migration can compensate the escape of polarized charge. Accordingly, the charge density can reach up to 596 µC m-2 and the charge retention rate reaches 49.7%, which is so far the highest intrinsic charge density obtained in the open air. Thus, the ionic chimerism strategy provides an effective way to suppress the charge escaping in the open air and gives a great expandable avenue for the material challenges of TENG's practical deployment.

5.
Nat Commun ; 15(1): 819, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280902

RESUMEN

Lightweight flexible piezoelectric polymers are demanded for various applications. However, the low instinctively piezoelectric coefficient (i.e. d33) and complex poling process greatly resist their applications. Herein, we show that introducing dynamic pressure during fabrication is capable for poling polyvinylidene difluoride/barium titanate (PVDF/BTO) composites with d33 of ~51.20 pC/N at low density of ~0.64 g/cm3. The melt-state dynamic pressure driven energy implantation induces structure evolutions of both PVDF and BTO are demonstrated as reasons for self-poling. Then, the porous material is employed as pressure sensor with a high output of ~20.0 V and sensitivity of ~132.87 mV/kPa. Besides, the energy harvesting experiment suggests power density of ~58.7 mW/m2 can be achieved for 10 N pressure with a long-term durability. In summary, we not only provide a high performance lightweight, flexible piezoelectric polymer composite towards sustainable self-powered sensing and energy harvesting, but also pave an avenue for electrical-free fabrication of piezoelectric polymers.

6.
Lasers Med Sci ; 38(1): 277, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38012462

RESUMEN

This study aimed to compare higher-order aberrations (HOAs) after small incision lenticule extraction (SMILE) in patients with different angle kappa. This is a retrospective report in which 341 right eyes of 341 patients who were subjected to SMILE, which used coaxially sighted corneal light reflex (CSCLR) as the treatment zone centered, treated by the same experienced surgeon (LHB) for correction of myopia and myopic astigmatism, preoperative and postoperative spherical equivalent (SE), angle kappa, total higher-order aberrations (total HOA), spherical aberration (SA), vertical coma (VC), horizontal coma (HC), oblique trefoil (OT), and horizontal trefoil (HT), were compared. SMILE showed outstanding performance in terms of safety, efficacy, and predictability. In addition, a comparison of preoperative and postoperative HOAs exhibited the difference of total HOA (P < 0.01), SA (P < 0.01), VC (P < 0.01), and HC (P < 0.01), which was statistically significant; however, for OT and HT with the longer follow-up time, the statistical difference gradually decreased. For stratification of angle kappa into groups based on decantation, angle kappa was divided into three major groups: r < 0.1 mm, 0.1 ≤ r < 0.2 mm, and r ≥ 0.2 mm; the changes of SA (F = 4.127, P = 0.021) and OT (F = 3.687, P = 0.031) exhibited significant difference after 1 year of SMILE. We performed a correlation analysis of all preoperative and postoperative parameters, and the results indicated that the preoperative total HOA was negatively correlated with preoperative cylindrical diopter (DC), and postoperative total HOA, SA, and coma were affected by spherical diopter (DS) and SE. Moreover, we also found a significant difference of SA and VC in the early postoperative with preoperative. SA was positively correlated with Y values and r of 1 year after SMILE. All of the analyzed parameters in the three groups, except for the trefoil, gradually increased over time; however, the trefoil could gradually stabilize over time. We also divided angle kappa into four groups by quadrants; the result showed that the effects of higher-order aberrations were markedly different from the various quadrants. Patients with large angle kappa were able to increase VC and SA postoperatively, and higher HOAs were more significant in patients with high myopia. The differences in quadrants exhibited a diversity of HOAs; this could be attributed to the corneal surface reestablishment and the alteration of angle kappa, but the trend was not apparent. Although all patients displayed increased HOAs after SMILE, the potential application of CSCLR as the treatment zone centered still showed excellent safety, efficacy, and predictability.


Asunto(s)
Miopía , Herida Quirúrgica , Humanos , Agudeza Visual , Estudios Retrospectivos , Coma , Refracción Ocular , Miopía/cirugía , Láseres de Excímeros
7.
Carbohydr Polym ; 305: 120535, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737188

RESUMEN

In this paper, we proposed a novel and green strategy based on water evaporation induced in-situ interfacial compatibilization (WEIC) mechanism for fabricating high-strength and all-natural lignocellulose/starch composites. This mechanism exploits the natural compatibility of the lignocellulose and starch and was tested through an internal mixing process with regulated water evaporation. Specifically, we revealed that a restrained layer was in-situ formed at the interface of the lignocellulose and starch during the internal mixing process; a faster water evaporation rate thickens this restrained layer, restricts the starch's molecular movement and significantly increases the composite's mechanical properties. The highest tensile strength and Young's modulus of the composites achieved are 21.7 ± 0.8 MPa and 2.2 ± 0.1 GPa, respectively, superior to many existing starch/lignocellulose composites. Thus, this work provides new insight into the compatibilization of various hydrophilic polysaccharides and paves new avenues for developing greener and more facile methods to fabricate all-polysaccharide composites.

8.
J Oncol ; 2022: 4537021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276280

RESUMEN

According to statistics released by the WHO, China has the highest prevalence of myopia in the world, with a frequency that is 1.5 times higher than the global average. Asians have the highest prevalence of myopia worldwide. The Ministry of Education and the State General Administration of Sports "2010 National Student Physical Fitness and Health Research Results" show that the incidence of poor vision among primary and secondary school students in China is 67.3%, and elementary school students' vision has decreased by 40.9%. Low vision among youth has become a major cause of affecting the quality of the population and improving national physical fitness; therefore, how to improve and enhance the vision level of youth has become a major issue for the government, sports, and educators face as a major issue. In order to address this issue, this research suggests a deep learning-based vision monitoring and risk prediction model for high myopia eyes and develops a deep artificial neural network that unsupervised learns essential characteristics of physiological time-series data.

9.
Aging (Albany NY) ; 14(15): 6128-6148, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35951367

RESUMEN

The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.


Asunto(s)
Cristalinas , Cristalino , Animales , Caenorhabditis elegans/metabolismo , Cristalinas/genética , Células Epiteliales/metabolismo , Cristalino/metabolismo , Masculino , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Nat Commun ; 13(1): 4083, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835779

RESUMEN

Triboelectric polymer with high charge density is the foundation to promote the wide range of applications of triboelectric nanogenerators. This work develops a method to produce triboelectric polymer based on repeated rheological forging. The fluorinated ethylene propylene film fabricated by repeated forging method not only has excellent mechanical properties and good transmittance, but also can maintain an ultrahigh tribo-charge density. Based on the film with a thickness of 30 µm, the output charge density from contact-separation nanogenerator reaches 352 µC·m-2. Then, the same film is applied for the nanogenerator with air-breakdown mode and a charge density of 510 µC·m-2 is further achieved. The repeated forging method can effectively regulate the composition of surface functional groups, the crystallinity, and the dielectric constants of the fluorinated ethylene propylene, leading to the superior capability of triboelectrification. Finally, we summarize the key parameters for elevating the electrification performance on the basis of molecular structure and related fabrication crafts, which can guide the further development of triboelectric polymers.

11.
Am J Cancer Res ; 11(10): 4807-4825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765294

RESUMEN

Deubiquitinase (DUB) zinc finger RANBP2-type containing 1 (ZRANB1) has been reported to have a close relationship with cancers. However, its underlying role and molecular mechanisms in hepatocellular carcinoma (HCC) remain elusive. In this study, we demonstrated that ZRANB1 was highly expressed in HCC tissues. Additionally, ZRANB1 overexpression was correlated with poorer survival and ZRANB1 could be an independent predictor of poor prognosis for HCC patients. Through gain- and loss-of-function assays, we examined the oncogenic role of ZRANB1 in regulating HCC cell growth and metastasis in vitro and in vivo. To identify the downstream targets of ZRANB1 in regulating HCC tumorigenesis, we performed RNA-seq and demonstrated that Lysyl oxidase-like 2 (LOXL2) was the most significantly downregulated gene after ZRANB1 knockdown. Furthermore, the scatter plots indicated a significant positive correlation between ZRANB1 and LOXL2 expression in clinical HCC specimens. We also demonstrated that ZRANB1 knockdown downregulated the expression of LOXL2 and suppressed HCC growth and metastasis in vitro and in vivo. The effects of ZRANB1 knockdown were reversed by LOXL2 overexpression. More importantly, ZRANB1 regulated LOXL2 through specificity protein 1 (SP1) and SP1 overexpression rescued the suppression of HCC growth and metastasis induced by ZRANB1 knockdown. Mechanistically, ZRANB1 bound with SP1 directly and stabilized the SP1 protein by deubiquitinating it. The expression patterns of ZRANB1, SP1 and LOXL2 were evaluated in HCC patients. In summary, our research highlights a novel role of ZRANB1 in the tumorigenesis of HCC and suggests a new candidate prognostic biomarker for HCC treatment.

12.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34643438

RESUMEN

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Sitios de Unión/inmunología , Vacunas contra la COVID-19/inmunología , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización Pasiva/métodos , Inmunoglobulina G/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios y Motivos de Interacción de Proteínas/inmunología , Carga Viral/efectos de los fármacos , Sueroterapia para COVID-19
13.
ACS Appl Mater Interfaces ; 13(31): 37252-37261, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318675

RESUMEN

With the rapid development of wearable electronics, piezoelectric materials have received great attention owing to their potential solution to the portable power source. To enhance the output capability and broaden the application, it is highly desired for the design of piezoelectric materials with a three-dimensional and porous structure to facilitate strain accumulation. Herein, enlightened by hierarchical structures in nature, a hierarchically nested network was constructed in polyvinylidene fluoride (PVDF) foam via solid-state shear milling and salt-leaching technology. The as-prepared foam exhibited two hierarchical levels of pores with diameters of 20∼50 µm and 0.3∼4 µm, by which the porosity and flexibility were significantly enhanced, while the highest piezoelectric output reached 11.84 V and 217.78 nA. As a proof-of-concept, the PVDF piezoelectric foam can also be used to monitor human movement toward the different magnitude of strain and frequency, and simultaneously collect energy in a multidimensional stress field for energy harvesting. This work provides a simple and convenient design idea for the preparation of energy harvesters, which have great application potential as a mechanical energy harvester or self-powered sensor in wearable electronic devices.

14.
Nat Commun ; 12(1): 2697, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976229

RESUMEN

Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolate and profile a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who has dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the highest binding affinity mAb (nCoV396) reveals changes in the epitopes and antigen's allosteric regulation. Functionally, a virus-free complement hyperactivation analysis demonstrates that nCoV396 specifically compromises the N protein-induced complement hyperactivation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


Asunto(s)
Anticuerpos Antivirales/farmacología , COVID-19/inmunología , Activación de Complemento/efectos de los fármacos , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Regulación Alostérica , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Complejo Antígeno-Anticuerpo/química , Convalecencia , Proteínas de la Nucleocápside de Coronavirus/química , Cristalografía por Rayos X , Epítopos , Humanos , Fosfoproteínas/química , Fosfoproteínas/inmunología , Conformación Proteica
15.
J Leukoc Biol ; 110(6): 1091-1099, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33993518

RESUMEN

The interaction of the solo H3K79 methyltransferase DOT1-like (DOT1L) and its regulatory factor ALL1-fused gene from chromosome 10 protein (AF10) is crucial for the transcription of developmental genes such as HOXA in acute leukemia. The octapeptide motif and leucine zipper region of AF10 is responsible for binding DOT1L and catalyzing H3K79 monomethylation to demethylation. However, the characteristics of the mechanism between DOT1L and AF10 are not clear. Here, we present the crystal structures of coiled-coil regions of DOT1L-AF10 and AF10-inhibitory peptide, demonstrating the inhibitory peptide could form a compact complex with AF10 via a different recognition pattern. Furthermore, an inhibitory peptide with structure-based optimization is identified and decreases the HOXA gene expression in a human cell line. Our studies provide an innovative pharmacologic basis for therapeutic intervention in leukemia.


Asunto(s)
Antineoplásicos/farmacología , N-Metiltransferasa de Histona-Lisina/química , Proteínas de Homeodominio/biosíntesis , Modelos Moleculares , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Regulación Neoplásica de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Conformación Proteica
16.
ACS Appl Mater Interfaces ; 13(9): 11480-11488, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625833

RESUMEN

Flexible and stretchable strain sensors are crucial components for wearable electronics that can detect and quantify the stimuli from the environment and thus realize the rapid feedback and control of smart devices. However, reconciliation of the conflict between resourceful design of conductive networks and large-scale production in the industry still faces a huge challenge. Herein, we present a new flow-manipulated strategy to prepare a wearable strain sensor featuring a helically intersected conductive network, which exhibited easy integration, multidimensional sensibility, and robust mechanical properties. From visualization of simulation and verification of experimental results, the helically intersected conductive network formed in an elastomer ring can simultaneously reflect the static and dynamic mechanical responses with a tunable gauge factor (10.41-31.12), wide linear region (0-40o), mechanical robustness (σs = ∼7 MPa, ε = ∼1400%), and rapid response time (∼300 ms). We further constructed a control system based on smart rings and demonstrated its application in controlling industrial robotic arms and remote-controlled cars. Looking ahead, this kind of a smart ring will be more widely used in space and underwater exploration, intelligent robotics, and human-machine interface technologies.


Asunto(s)
Fibra de Carbono/química , Elastómeros/química , Polietilenos/química , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Diseño de Equipo , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Robótica/métodos
17.
iScience ; 24(3): 102187, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33615195

RESUMEN

Dysregulated immune cell responses have been linked to the severity of coronavirus disease 2019 (COVID-19), but the specific viral factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were currently unknown. Herein, we reveal that the Immunoglobulin-like fold ectodomain of the viral protein SARS-CoV-2 ORF7a interacts with high efficiency to CD14+ monocytes in human peripheral blood, compared to pathogenic protein SARS-CoV ORF7a. The crystal structure of SARS-CoV-2 ORF7a at 2.2 Å resolution reveals three remarkable changes on the amphipathic side of the four-stranded ß-sheet, implying a potential functional interface of the viral protein. Importantly, SARS-CoV-2 ORF7a coincubation with CD14+ monocytes ex vivo triggered a decrease in HLA-DR/DP/DQ expression levels and upregulated significant production of proinflammatory cytokines, including IL-6, IL-1ß, IL-8, and TNF-α. Our work demonstrates that SARS-CoV-2 ORF7a is an immunomodulating factor for immune cell binding and triggers dramatic inflammatory responses, providing promising therapeutic drug targets for pandemic COVID-19.

18.
Int J Biol Macromol ; 174: 42-51, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33497694

RESUMEN

The development and utilization of inorganic material biosynthesis have evolved into single macromolecular systems. A putative cystathionine γ-lyase of bacteria Stenotrophomonas maltophilia (smCSE) is a newly identified biomolecule that enables the synthesis of nanomaterials. Due to the lack of structural information, the mechanism of smCSE biosynthesis remains unclear. Herein, we obtain two atomic-resolution smCSE-form X-ray structures and confirm that the conformational changes of Tyr108 and Lys206 within the enzyme active sites are critical for the protein-driven synthesis of metal sulfide quantum dots (QDs). The structural stability of tetramer and the specificity of surface amino acids are the basis for smCSE to synthesize quantum dots. The size of QD products can be regulated by predesigned amino acids and the morphology can be controlled through proteolytic treatments. The growth rate is enhanced by the stabilization of a flexible loop in the active site, as shown by the X-ray structure of the engineered protein which fused with a dodecapeptide. We further prove that the smCSE-driven route can be applied to the general synthesis of other metal sulfide nanoparticles. These results provide a better understanding of the mechanism of QD biosynthesis and a new perspective on the control of this biosynthesis by protein modification.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/ultraestructura , Puntos Cuánticos/química , Aminoácidos , Bacterias/metabolismo , Cistationina gamma-Liasa/química , Sustancias Macromoleculares , Metales , Nanoestructuras , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/metabolismo , Sulfuros/química
19.
Front Immunol ; 12: 807134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975921

RESUMEN

ORF8 is a viral immunoglobulin-like (Ig-like) domain protein encoded by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome. It tends to evolve rapidly and interfere with immune responses. However, the structural characteristics of various coronavirus ORF8 proteins and their subsequent effects on biological functions remain unclear. Herein, we determined the crystal structures of SARS-CoV-2 ORF8 (S84) (one of the epidemic isoforms) and the bat coronavirus RaTG13 ORF8 variant at 1.62 Å and 1.76 Å resolution, respectively. Comparison of these ORF8 proteins demonstrates that the 62-77 residues in Ig-like domain of coronavirus ORF8 adopt different conformations. Combined with mutagenesis assays, the residue Cys20 of ORF8 is responsible for forming the covalent disulfide-linked dimer in crystal packing and in vitro biochemical conditions. Furthermore, immune cell-binding assays indicate that various ORF8 (SARS-CoV-2 ORF8 (L84), ORF8 (S84), and RaTG13 ORF8) proteins have different interaction capabilities with human CD14+ monocytes in human peripheral blood. These results provide new insights into the specific characteristics of various coronavirus ORF8 and suggest that ORF8 variants may influence disease-related immune responses.


Asunto(s)
COVID-19/inmunología , Quirópteros/inmunología , Inmunidad/inmunología , Dominios de Inmunoglobulinas/inmunología , Proteínas Virales/inmunología , Animales , Sitios de Unión/genética , COVID-19/virología , Células Cultivadas , Quirópteros/genética , Quirópteros/metabolismo , Cristalografía por Rayos X , Humanos , Inmunidad/genética , Dominios de Inmunoglobulinas/genética , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Modelos Moleculares , Monocitos/inmunología , Monocitos/metabolismo , Mutación , Unión Proteica , Especificidad de la Especie , Proteínas Virales/clasificación , Proteínas Virales/genética
20.
ACS Appl Mater Interfaces ; 12(46): 52038-52049, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33156624

RESUMEN

With the popularization of 5G communications and the internet of things, electromagnetic wave (EW) radiation pollution has aroused much concern from the public, and the search for new materials and technologies for preparing electromagnetic shielding materials still continues all around the world. However, the contradiction among high shielding performance, economic applicability, and flexibility is still not well balanced. Herein, we fabricated a novel foldable leather solid waste (LSW)/polyvinyl alcohol (PVA)/silver (Ag) paper with excellent electromagnetic interference (EMI)-shielding ability using a facile but sustainable electroless plating (ELP) method with LSW as the resource. Taking PVA as a cross-linker, debundled leather fibers (LFs) generated by solid-state shearing milling could generate a flexible LSW/PVA substrate with a high specific surface area, and eventually the deposited Ag layer served as a protective layer not only to significantly improve the mechanical and thermal robustness, but also to endow the LSW/PVA/Ag paper with good hydrophobicity, which could protect from potential moisture damage. In addition to the reflection effect of metallic Ag on EW, the hierarchical structure of collagen fibers played an important role in superior high EMI-shielding effectiveness (∼55-∼90 dB) by an absorption-dominant EMI-shielding mechanism. Furthermore, a multilayer LSW/PVA/Ag paper was also prepared with enhanced EMI-shielding effectiveness of 111.3 dB benefited by constructing multiple reflection-absorption interfaces. The high-performance, environmentally friendly, and low-cost EMI-shielding materials not only offered a new avenue toward recycling LSW in a more value-added way, but also displayed promising potential for application in flexible shielding materials or wearable clothing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA