Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(68): 9058-9061, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39101215

RESUMEN

Here, we propose a piperidine-based ionic liquid additive. The electrostatic shielding effect of the piperidine cation (PP13+) effectively inhibits the growth of lithium dendrites. Simultaneously, the redox activity of the bromine anion synergistically reduces the overpotential. This approach significantly improves the cycling performance of lithium-oxygen batteries.

2.
World J Psychiatry ; 14(1): 88-101, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38327885

RESUMEN

BACKGROUND: Early diagnosis and therapeutic interventions can greatly enhance the developmental trajectory of children with autism spectrum disorder (ASD). However, the etiology of ASD is not completely understood. The presence of confounding factors from environment and genetics has increased the difficulty of the identification of diagnostic biomarkers for ASD. AIM: To estimate and interpret the causal relationship between ASD and metabolite profile, taking into consideration both genetic and environmental influences. METHODS: A two-sample Mendelian randomization (MR) analysis was conducted using summarized data from large-scale genome-wide association studies (GWAS) including a metabolite GWAS dataset covering 453 metabolites from 7824 European and an ASD GWAS dataset comprising 18381 ASD cases and 27969 healthy controls. Metabolites in plasma were set as exposures with ASD as the main outcome. The causal relationships were estimated using the inverse variant weight (IVW) algorithm. We also performed leave-one-out sensitivity tests to validate the robustness of the results. Based on the drafted metabolites, enrichment analysis was conducted to interpret the association via constructing a protein-protein interaction network with multi-scale evidence from databases including Infinome, SwissTargetPrediction, STRING, and Metascape. RESULTS: Des-Arg(9)-bradykinin was identified as a causal metabolite that increases the risk of ASD (ß = 0.262, SE = 0.064, PIVW = 4.64 × 10-5). The association was robust, with no significant heterogeneity among instrument variables (PMR Egger = 0.663, PIVW = 0.906) and no evidence of pleiotropy (P = 0.949). Neuroinflammation and the response to stimulus were suggested as potential biological processes mediating the association between Des-Arg(9) bradykinin and ASD. CONCLUSION: Through the application of MR, this study provides practical insights into the potential causal association between plasma metabolites and ASD. These findings offer perspectives for the discovery of diagnostic or predictive biomarkers to support clinical practice in treating ASD.

3.
Front Genet ; 13: 982030, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226174

RESUMEN

Background: The function and features of long non-coding RNAs (lncRNAs) are already attracting attention and extensive research on their role as biomarkers of prediction in lung cancer. However, the signatures that are both related to genomic instability (GI) and tumor immune microenvironment (TIME) have not yet been fully explored in previous studies of non-small cell lung cancer (NSCLC). Method: The clinical characteristics, RNA expression profiles, and somatic mutation information of patients in this study came from The Cancer Genome Atlas (TCGA) database. Cox proportional hazards regression analysis was performed to construct genomic instability-related lncRNA signature (GIrLncSig). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the potential functions of lncRNAs. CIBERSORT was used to calculate the proportion of immune cells in NSCLC. Result: Eleven genomic instability-related lncRNAs in NSCLC were identified, then we established a prognostic model with the GIrLncSig ground on the 11 lncRNAs. Through the computed GIrLncSig risk score, patients were divided into high-risk and low-risk groups. By plotting ROC curves, we found that patients in the low-risk group in the test set and TCGA set had longer overall survival than those in the high-risk group, thus validating the survival predictive power of GIrLncSig. By stratified analysis, there was still a significant difference in overall survival between high and low risk groups of patients after adjusting for other clinical characteristics, suggesting the prognostic significance of GIrLncSig is independent. In addition, combining GIrLncSig with TP53 could better predict clinical outcomes. Besides, the immune microenvironment differed significantly between the high-risk and the low-risk groups, patients with low risk scores tend to have upregulation of immune checkpoints and chemokines. Finally, we found that high-risk scores were associated with increased sensitivity to chemotherapy. Conclusion: we provided a new perspective on lncRNAs related to GI and TIME and revealed the worth of them in immune infiltration and immunotherapeutic response. Besides, we found that the expression of AC027288.1 is associated with PD-1 expression, which may be a potential prognostic marker in immune checkpoint inhibitor response to improve the prediction of clinical survival in NSCLC patients.

4.
PLoS One ; 16(12): e0260720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855841

RESUMEN

Globally, non-small cell lung cancer (NSCLC) is the most common malignancy and its prognosis remains poor because of the lack of reliable early diagnostic biomarkers. The competitive endogenous RNA (ceRNA) network plays an important role in the tumorigenesis and prognosis of NSCLC. Tumor immune microenvironment (TIME) is valuable for predicting the response to immunotherapy and determining the prognosis of NSCLC patients. To understand the TIME-related ceRNA network, the RNA profiling datasets from the Genotype-Tissue Expression and The Cancer Genome Atlas databases were analyzed to identify the mRNAs, microRNAs, and lncRNAs associated with the differentially expressed genes. Weighted gene co-expression network analysis revealed that the brown module of mRNAs and the turquoise module of lncRNAs were the most important. Interactions among microRNAs, lncRNAs, and mRNAs were prognosticated using miRcode, miRDB, TargetScan, miRTarBase, and starBase databases. A prognostic model consisting of 13 mRNAs was established using univariate and multivariate Cox regression analyses and validated by the receiver operating characteristic (ROC) curve. The 22 immune infiltrating cell types were analyzed using the CIBERSORT algorithm, and results showed that the high-risk score of this model was related to poor prognosis and an immunosuppressive TIME. A lncRNA-miRNA-mRNA ceRNA network that included 69 differentially expressed lncRNAs (DElncRNAs) was constructed based on the five mRNAs obtained from the prognostic model. ROC survival analysis further showed that the seven DElncRNAs had a substantial prognostic value for the overall survival (OS) in NSCLC patients; the area under the curve was 0.65. In addition, the high-risk group showed drug resistance to several chemotherapeutic and targeted drugs including cisplatin, paclitaxel, docetaxel, gemcitabine, and gefitinib. The differential expression of five mRNAs and seven lncRNAs in the ceRNA network was supported by the results of the HPA database and RT-qPCR analyses. This comprehensive analysis of a ceRNA network identified a set of biomarkers for prognosis and TIME prediction in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Redes Reguladoras de Genes/genética , Neoplasias Pulmonares/patología , ARN/metabolismo , Anciano , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Curva ROC , Tasa de Supervivencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-32733591

RESUMEN

OBJECTIVE: Chinese Medicinal Properties (CMP) play a vital role in theoretical research and clinical practice. However, the traditional CMP system is subjective, qualitative, fixed, inconsistent, and obscured. Nowadays, quantifying CMP research achieved a notable progress. This study aims to review and reflect the relevance between qualitative CMP and quantitative material components. METHODS: A raw literature search was performed firstly in CNKI and Pubmed database to get a rough idea on the general advances in measuring CMP. Then, a strict literature search and data extraction from two dependent research studies were performed to analyze the relevance and discrimination between CMP and material components. RESULTS: The quantitative CMP research mainly focused on the microelements and chemical compositions. The largest microelements research listed 747 Chinese Materia Medica (CMM) (6780 flavors) and 120,000 element data. The measurement of chemical composition of CMM has risen rapidly in the 1990s and continues till the present. Thirty-seven articles were finally identified for the relevance analysis of CMP and material components. Of these, 18 and 19 articles correspondingly focused on the chemical compositions and microelements, and 26 and 11 articles correspondingly focused on their correlation and discrimination relationship. The most commonly used method for correlation analysis is intuitive analysis. The support vector machine maybe highly efficient and would act as the preferred method in discriminant analysis. Twelve (67%) and 5 (26%) articles' data came from the literature search in chemical compositions and microelement research studies. Four studies indicated that the research objects are the basic substances and material basis of CMP, 15 articles claimed that the chemical compositions were significantly related to CMP, 12 research studies concluded that the regularity and causality were identified between the research objects and CMP, and 9 research studies successfully established discriminant models for CMP basing on the detected substances. CONCLUSIONS: The relevance research between qualitative CMP and quantitative material components achieved a positive progress, though it is weak and defective. Standardizing the qualitative CMP system, establishing series comprehensive databases for the material components, innovating statistical and data mining methods, and integrating doctors' experiences are important and feasible for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...